【题目】如图1,在平面直角坐标系中,直线y=x+4与抛物线y=﹣x2+bx+c(b,c是常数)交于A、B两点,点A在x轴上,点B在y轴上.设抛物线与x轴的另一个交点为点C.
(1)求该抛物线的解析式;
(2)P是抛物线上一动点(不与点A、B重合),
①如图2,若点P在直线AB上方,连接OP交AB于点D,求的最大值;
②如图3,若点P在x轴的上方,连接PC,以PC为边作正方形CPEF,随着点P的运动,正方形的大小、位置也随之改变.当顶点E或F恰好落在y轴上,直接写出对应的点P的坐标.
【答案】(1) ;(2)①;②P点坐标(,),(, ),(,2 )(,2 )
【解析】
(1)利用直线解析式求出点A、B的坐标,再利用待定系数法求二次函数解析式即可;
(2)作PF∥BO交AB于点F,证△PFD∽△OBD,得比例线段,则PF取最大值时,求得的最大值;
(3)(i)点F在y轴上时,过点P作PH⊥x轴于H,根据正方形的性质可证明△CPH≌△FCO,根据全等三角形对应边相等可得PH=CO=2,然后利用二次函数解析式求解即可;(ii)点E在y轴上时,过点PK⊥x轴于K,作PS⊥y轴于S,同理可证得△EPS≌△CPK,可得PS=PK,则P点的横纵坐标互为相反数,可求出P点坐标;点E在y轴上时,过点PM⊥x轴于M,作PN⊥y轴于N,同理可证得△PEN≌△PCM,可得PN=PM,则P点的横纵坐标相等,可求出P点坐标.
解:(1)直线y=x+4与坐标轴交于A、B两点,
当x=0时,y=4,x=﹣4时,y=0,
∴A(﹣4,0),B(0,4),
把A,B两点的坐标代入解析式得,,解得,,
∴抛物线的解析式为 ;
(2)①如图1,作PF∥BO交AB于点F,
∴△PFD∽△OBD,
∴,
∵OB为定值,
∴当PF取最大值时,有最大值,
设P(x,),其中﹣4<x<0,则F(x,x+4),
∴PF==,
∵且对称轴是直线x=﹣2,
∴当x=﹣2时,PF有最大值,
此时PF=2,;
②∵点C(2,0),
∴CO=2,
(i)如图2,点F在y轴上时,过点P作PH⊥x轴于H,
在正方形CPEF中,CP=CF,∠PCF=90°,
∵∠PCH+∠OCF=90°,∠PCH+∠HPC=90°,
∴∠HPC=∠OCF,
在△CPH和△FCO中,,
∴△CPH≌△FCO(AAS),
∴PH=CO=2,
∴点P的纵坐标为2,
∴,
解得,,
∴,,
(ii)如图3,点E在y轴上时,过点PK⊥x轴于K,作PS⊥y轴于S,
同理可证得△EPS≌△CPK,
∴PS=PK,
∴P点的横纵坐标互为相反数,
∴,
解得x=2(舍去),x=﹣2,
∴,
如图4,点E在y轴上时,过点PM⊥x轴于M,作PN⊥y轴于N,
同理可证得△PEN≌△PCM
∴PN=PM,
∴P点的横纵坐标相等,
∴,
解得,(舍去),
∴,
综合以上可得P点坐标(,),(, ),(,2 )(,2 ).
科目:初中数学 来源: 题型:
【题目】(1)(问题发现)
如图1,△ABC和△ADE都是等腰直角三角形,∠BAC=∠DAE=90°,延长CA到点F,使得AF=AC,连接DF、BE,则线段BE与DF的数量关系为 ,位置关系为 ;
(2)(拓展研究)
将△ADE绕点A旋转,(1)中的结论有无变化?仅就图(2)的情形给出证明;
(3)(解决问题)
当AB=2,AD=,△ADE旋转得到D,E,F三点共线时,直接写出线段DF的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某家具生产厂生产某种配套桌椅(一张桌子,两把椅子),已知每块板材可制作桌子张或椅子把,现计划用块这种板材生产一批桌椅(不考虑板材的损耗,恰好配套),设用块板材做椅子,用块板材做桌子,则下列方程组正确的是( )
A.B.
C.D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】学校计划为疫情期间表现优秀的学生购买奖品.已知购买个奖品和个奖品共需元;购买个奖品和个奖品共需元
(1)求两种奖品的单价;
(2)学校准备购买两种奖品共个,且奖品的数量不少于奖品数量的一半,请设计出最省钱的购买方案,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一次函数与反比例函数的图象交于两点.
(1)求一次函数与反比例函数的解析式;
(2)根据已知条件,请直接写出不等式的解集;
(3)过点作轴,垂足为,求的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】五一小长假前夕,某服装店的老板到服装厂购买男士夏装和女士夏装.已知购进套男士夏装和套女士夏装需要元;购进套男士夏装和套女士夏装需要元.
(1)求男士夏装和女士夏装每套进价分别是多少元;
(2)若套男士夏装的售价为元,套女士夏装的售价为元,时装店决定购进男士夏装的数量为女士夏装的数量的还多套,如果购进的男士夏装和女士夏装全部售出后的总利润超过元,那么此次至少可购进多少套女士夏装?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在矩形纸片中,,,折叠纸片使点落在边上的处,折痕为,过点作交于,连接.
(1)求证:四边形为菱形;
(2)当点在边上移动时,折痕的端点也随之移动;
①当点与点重合时(如图2),求菱形的边长;
②若限定分别在边上移动,求出点在边上移动的最大距离.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线交x轴于A、B两点(点A在点B的左侧),.
(1)求抛物线的函数表达式;
(2)如图①,连接BC,点P在抛物线上,且∠BCO=∠PBA.求点P的坐标
(3)如图②,M是抛物线上一点,N为射线CB上的一点,且M、N两点均在第一象限内,B、N是位于直线AM同侧的不同两点,,点M到轴的距离为2L,△AMN的面积为5L,且∠ANB=∠MBN,请问MN的长是否为定值?如果是,请求出这个定值;如果不是,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com