精英家教网 > 初中数学 > 题目详情
7.下列运算正确的有(  )
A.5ab-ab=4B.3$\sqrt{2}$-$\sqrt{2}$=3C.a6÷a3=a3D.$\frac{1}{a}$+$\frac{1}{b}$=$\frac{2}{a+b}$

分析 直接利用合并同类项法则以及二次根式加减运算法则和同底数幂的除法运算法则、分式加减运算法则分别化简求出答案.

解答 解:A、5ab-ab=4ab,故此选项错误,不合题意;
B、3$\sqrt{2}$-$\sqrt{2}$=2$\sqrt{2}$,故此选项错误,不合题意;
C、a6÷a3=a3,正确,符合题意;
D、$\frac{1}{a}$+$\frac{1}{b}$=$\frac{b}{ab}$+$\frac{a}{ab}$=$\frac{a+b}{ab}$,故此选项错误,不合题意;
故选:C.

点评 此题主要考查了合并同类项以及二次根式加减运算和同底数幂的除法运算、分式加减运算等知识,正确掌握运算法则是解题关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

17.如图,在?ABCD中,M,N分别是AD,BC的中点,∠AND=90°,连接CM交DN于点O.
(1)求证:△ABN≌△CDM;
(2)连接MN,求证四边形MNCD是菱形.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.已知a、b互为相反数,c、d互为倒数,m的绝对值是5,n是最大的负整数,求代数式2016(a+b)-4cd+2mn的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.先化简:(1+$\frac{1}{x}$)÷$\frac{{x}^{2}-1}{x}$,再从1、-1、0、2中选择一个合适的数代入求值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.商店只有雪碧、可乐、果汁、奶汁四种饮料,某同学去该店购买饮料,每种饮料被选中的可能性相同.
(1)若他去买一瓶饮料,则他买到奶汁的概率是多少?
(2)若他两次去买饮料,每次买一瓶,且两次所买饮料品种不同,请用树状图或列表法求出他恰好买到雪碧和奶汁的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.一辆汽车开往距离出发地160km的目的地,出发后第一小时内按原计划的速度匀速行驶.一小时后以原来速度的1.5倍匀速行驶,比原计划提前20min到达目的地,求前一小时的行驶速度.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.如图在数学活动课中,小敏为了测量小院内旗杆AB的高度,站在教学楼上的C处测得旗杆低端B的俯角为45°,测得旗杆顶端A的仰角为30°,如旗杆与教学楼的水平距离CD为12m,则旗杆AB的高度是多少米?(参考值:$\sqrt{3}$≈1.73,$\sqrt{2}$≈1.41,结果精确到0.1米)

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

5.如图,⊙O中,∠AOB=120°,点E在$\widehat{AB}$上任意一点,作等边△CDE,且C、D在AB上,设AC=x,BD=y,CD=2,则y关于x的函数关系式为y=$\frac{4}{x}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.如图,一次函数的图象l经过点A(2,5),B(-4,-1)两点.
(1)求一次函数表达式.
(2)求直线与x轴的交点C和与y轴的交点D的坐标.
(3)若点E在x轴上,且E(2,0),求△CDE的面积.
(4)你能求出点E到直线l的距离吗?

查看答案和解析>>

同步练习册答案