精英家教网 > 初中数学 > 题目详情
19.如图在数学活动课中,小敏为了测量小院内旗杆AB的高度,站在教学楼上的C处测得旗杆低端B的俯角为45°,测得旗杆顶端A的仰角为30°,如旗杆与教学楼的水平距离CD为12m,则旗杆AB的高度是多少米?(参考值:$\sqrt{3}$≈1.73,$\sqrt{2}$≈1.41,结果精确到0.1米)

分析 根据正切的概念分别求出AD、BD的长,计算即可.

解答 解:Rt△ACD中,CD=12,∠ACD=30°,
AD=CD×tan30°=4$\sqrt{3}$,
Rt△DCB中,CD=12,∠BCD=45°,
BD=CD×tan45°=12,
∴AB=AD+BD=4$\sqrt{3}$+12=4×1.73+12=18.92≈18.9米,
答:旗杆的高AB为18.9米.

点评 本题考查的是解直角三角形的应用-仰角俯角问题,掌握仰角俯角的概念、熟记锐角三角函数的定义是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

9.如图,在四边形ABCD中,AD∥BC,∠B=90°,AB=4cm,AD=6cm,BC=9cm,点P从点A出发,以2cm/s的速度沿A→D→C方向向点C运动;同时点Q从点C出发,以1cm/s的速度沿C→B方向向点B运动,设点Q运动时间为ts,△APQ的面积为Scm2
(1)DC=5cm,sin∠BCD=$\frac{4}{5}$.
(2)当四边形PDCQ为平行四边形时,求t的值.
(3)求S与t的函数关系式.
(4)若S与t的函数图象与直线S=k(k为常数)有三个不同的交点,则k的取值范围是$\frac{51}{5}$<k<12.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

10.下列运算正确的是(  )
A.(x34=x7B.(-x)2•x3=x5C.(-x)4÷x=-x3D.x+x2=x3

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

7.下列运算正确的有(  )
A.5ab-ab=4B.3$\sqrt{2}$-$\sqrt{2}$=3C.a6÷a3=a3D.$\frac{1}{a}$+$\frac{1}{b}$=$\frac{2}{a+b}$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.如图,AE∥BF,AC平分∠BAD,且交BF于点C,BD平分∠ABC,且交AE于点D,连接CD,求证:四边形ABCD是菱形.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.(1)计算:($\frac{1}{2}$)-2-6sin30°-($\frac{1}{\sqrt{7}-\sqrt{5}}$)0+$\sqrt{2}$+|$\sqrt{2}$-$\sqrt{3}$|
(2)化简:($\frac{x+2}{{x}^{2}-2x}$-$\frac{x-1}{{x}^{2}-4x+4}$)÷$\frac{x-4}{x}$,然后请自选一个你喜欢的x值,再求原式的值.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

11.下列各式能用完全平方式进行因式分解的是(  )
A.x2+9y2B.x2+2x-1C.9x2+6x+1D.x2+4x+2

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

17.如图,以等腰直角△ABC的斜边BC为直角边向外作第二个等腰直角△BCD,再以等腰直角△BCD的斜边CD为直角边向外作第三个等腰直角△CDE,再以等腰直角△CDE的斜边DE为直角边向外作第四个等腰直角△DEF.连结AF分别交BC,DC,DE于点M,N,K,若S△ABM+S△DNK=13,则△CMN的面积为16.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

18.经过点(0,-2),且与直线y=3x平行的直线是(  )
A.y=3x+2B.y=3x-2C.y=-3x+2D.y=-3x-2

查看答案和解析>>

同步练习册答案