分析 如图,由题意设AB=AC=a,则BC=BD=$\sqrt{2}$a,DC=CE=2a,DE=DF=2$\sqrt{2}$a,EF=4a,AF=$\sqrt{(3a)^{2}+(4a)^{2}}$=5a.由DN∥AB,推出$\frac{DN}{AB}$=$\frac{DF}{BF}$=$\frac{2\sqrt{2}a}{3\sqrt{2}a}$=$\frac{2}{3}$.推出DN=$\frac{2}{3}$a,CN=CD-DN=$\frac{4}{3}$a,由AB∥CD,CM∥DK,推出△ABM∽△NCM∽△NDK,推出$\frac{{S}_{△ABM}}{{S}_{△DNK}}$=$\frac{9}{4}$,$\frac{{S}_{△ABM}}{{S}_{△CMN}}$=$\frac{9}{16}$,由S△ABM+S△DNK=13,推出S△ABM=9,S△CMN=16.
解答 解:如图,由题意设AB=AC=a,则BC=BD=$\sqrt{2}$a,DC=CE=2a,DE=DF=2$\sqrt{2}$a,EF=4a,AF=$\sqrt{(3a)^{2}+(4a)^{2}}$=5a.
∵DN∥AB,
∴$\frac{DN}{AB}$=$\frac{DF}{BF}$=$\frac{2\sqrt{2}a}{3\sqrt{2}a}$=$\frac{2}{3}$.
∴DN=$\frac{2}{3}$a,CN=CD-DN=$\frac{4}{3}$a,
∵AB∥CD,CM∥DK,
∴△ABM∽△NCM∽△NDK,
∴$\frac{{S}_{△ABM}}{{S}_{△DNK}}$=$\frac{9}{4}$,$\frac{{S}_{△ABM}}{{S}_{△CMN}}$=$\frac{9}{16}$,
∵S△ABM+S△DNK=13,
∴S△ABM=9,S△CMN=16.
故答案为16.
点评 本题考查等腰直角三角形的性质、相似三角形的判定和性质等知识、解题的关键是学会利用参数解决问题,灵活运用相似三角形的性质,属于中考填空题中的压轴题.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com