分析 (1)由四边形ABCD是平行四边形,可得AB=CD,AD=BC,∠B=∠CDM,又由M、N分别是AD,BC的中点,即可利用SAS证得△ABN≌△CDM;
(2)利用直角三角形形的性质结合菱形的判定方法证明即可.
解答 解:
(1)证明:∵四边形ABCD是平行四边形,
∴AB=CD,AD=BC,∠B=∠CDM,
∵M、N分别是AD,BC的中点,
∴BN=DM,
∵在△ABN和△CDM中,
$\left\{\begin{array}{l}{AB=CD}\\{∠B=∠CDM}\\{BN=DM}\end{array}\right.$,
∴△ABN≌△CDM(SAS);
(2)证明:
∵M是AD的中点,∠AND=90°,
∴NM=AM=MD,
∵BN=NC=AM=DM,
∴NC=MN=DM,
∵NC$\stackrel{∥}{=}$DM,
∴四边形CDMN是平行四边形,
又∵MN=DM,
∴四边形CDMN是菱形.
点评 此题主要考查了平行四边形的性质以及全等三角形的判定与性质、菱形的判定等知识,正确应用直角三角形的性质是解题关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | y1<y2 | B. | y1=y2 | C. | y1>y2 | D. | 大小不确定 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 5ab-ab=4 | B. | 3$\sqrt{2}$-$\sqrt{2}$=3 | C. | a6÷a3=a3 | D. | $\frac{1}{a}$+$\frac{1}{b}$=$\frac{2}{a+b}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com