精英家教网 > 初中数学 > 题目详情
7.如图A、F、B、C是半圆O上的四个点,四边形OABC是平行四边形,∠FAB=15°,连接OF交AB于点E,过点C作OF的平行线交AB的延长线于点D,延长AF交直线CD于点H.
(1)求证:CD是半圆O的切线;
(2)求$\frac{EF}{DH}$的比值;若DH=6,求EF和半径OA的长.

分析 (1)连接OB,根据已知条件得到△AOB是等边三角形,得到∠AOB=60°,根据圆周角定理得到∠AOF=∠BOF=30°,根据平行线的性质得到OC⊥CD,由切线的判定定理即可得到结论;
(2)根据平行线的性质得到∠DBC=∠EAO=60°,解直角三角形得到BD=$\frac{1}{2}$BC=$\frac{1}{2}$AB,推出AE=$\frac{1}{3}$AD,根据相似三角形的性质得到$\frac{EF}{DH}$=$\frac{AE}{AD}$,求得EF=2,根据直角三角形的性质即可得到结论.

解答 解:(1)连接OB,
∵OA=OB=OC,
∵四边形OABC是平行四边形,
∴AB=OC,
∴△AOB是等边三角形,
∴∠AOB=60°,
∵∠FAD=15°,
∴∠BOF=30°,
∴∠AOF=∠BOF=30°,
∴OF⊥AB,
∵CD∥OF,
∴CD⊥AD,
∵AD∥OC,
∴OC⊥CD,
∴CD是半圆O的切线;
(2)∵BC∥OA,
∴∠DBC=∠EAO=60°,
∴BD=$\frac{1}{2}$BC=$\frac{1}{2}$AB,
∴AE=$\frac{1}{3}$AD,
∵EF∥DH,
∴△AEF∽△ADH,
∴$\frac{EF}{DH}$=$\frac{AE}{AD}$=$\frac{1}{3}$,
∵DH=6,
∴EF=2,
∴$\frac{OE}{OA}=\frac{OA-2}{OA}=\frac{\sqrt{3}}{2}$,
∵OF=OA,
∴OE=OA-2
∵∠AOE=30°,
解得:OA=8+4$\sqrt{3}$.

点评 本题考查了切线的判定,平行四边形的性质,直角三角形的性质,等边三角形的判定和性质,连接OB构造等边三角形是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

17.(1)如图1,直线AB:y=-2x+8分别交x轴、y轴于点A、B,与直线OC:y=$\frac{6}{5}$x交于点C.
求①点C的坐标;
②△OAC的面积.
(2)如图2,已知直线OC:y=$\frac{6}{5}$x,作∠AOC的平分线ON,△OAC的面积为5,且OA=4,P、Q分别为线段OA、OE上的动点,连结AQ与PQ,试探索AQ+PQ是否存在最小值?若存在,求出这个最小值;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.将函数y=2x+b(b为常数)的图象位于x轴上方的部分沿x轴翻折至其下方后,所得的折线是函数y=-|2x+b|(b为常数)的图象.若该图象在直线y=-4上方的点的横坐标x满足0<x<5.求b的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.如图,某小区楼房附近有一个斜坡,小张发现楼房在水平地面与斜坡处形成的投影中,在斜坡上的影子长CD=6m,坡角到楼房的距离CB=8m.在D点处观察点A的仰角为60°,已知坡角为30°,你能求出楼房AB的高度吗?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.(1)先化简,再求值:(1+$\frac{1}{x-2}$)÷$\frac{{x}^{2}-1}{2x-4}$,其中x=$\sqrt{3}-$1
(2)$\frac{2sin60°-3tan30°•tan45°}{2cos45°-1}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.阅读理解:运用“同一图形的面积相等”可以证明一些含有线段的等式成立,这种解决问题的方法我们称之为面积法.如图1,在等腰△ABC中,AB=AC,AC边上的高为h,点M为底边BC上的任意一点,点M到腰AB、AC的距离分别为h1、h2,连接AM,利用S△ABC=S△ABM+S△ACM,可以得出结论:h=h1+h2
类比探究:在图1中,当点M在BC的延长线上时,猜想h、h1、h2之间的数量关系并证明你的结论.
拓展应用:如图2,在平面直角坐标系中,有两条直线l1:y=$\frac{3}{4}$x+3,l2:y=-3x+3,
若l2上一点M到l1的距离是1,试运用“阅读理解”和“类比探究”中获得的结论,求出点M的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

19.已知(k2-16)x2-(k-4)x+(k+4)=0是关于x的一元一次方程,则2k+10=2.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.如图,在△ABC中,AB=AC=10,BC=12,矩形DEFG的顶点位于△ABC的边上,设EF=x,S四边形DEFG=y.
(1)填空:自变量x的取值范围是0<x<12;
(2)求出y与x的函数表达式;
(3)请描述y随x的变化而变化的情况.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.如图,在?ABCD中,M,N分别是AD,BC的中点,∠AND=90°,连接CM交DN于点O.
(1)求证:△ABN≌△CDM;
(2)连接MN,求证四边形MNCD是菱形.

查看答案和解析>>

同步练习册答案