分析 (1)连接OB,根据已知条件得到△AOB是等边三角形,得到∠AOB=60°,根据圆周角定理得到∠AOF=∠BOF=30°,根据平行线的性质得到OC⊥CD,由切线的判定定理即可得到结论;
(2)根据平行线的性质得到∠DBC=∠EAO=60°,解直角三角形得到BD=$\frac{1}{2}$BC=$\frac{1}{2}$AB,推出AE=$\frac{1}{3}$AD,根据相似三角形的性质得到$\frac{EF}{DH}$=$\frac{AE}{AD}$,求得EF=2,根据直角三角形的性质即可得到结论.
解答 解:(1)连接OB,
∵OA=OB=OC,
∵四边形OABC是平行四边形,
∴AB=OC,
∴△AOB是等边三角形,
∴∠AOB=60°,
∵∠FAD=15°,
∴∠BOF=30°,
∴∠AOF=∠BOF=30°,
∴OF⊥AB,
∵CD∥OF,
∴CD⊥AD,
∵AD∥OC,
∴OC⊥CD,
∴CD是半圆O的切线;
(2)∵BC∥OA,
∴∠DBC=∠EAO=60°,
∴BD=$\frac{1}{2}$BC=$\frac{1}{2}$AB,
∴AE=$\frac{1}{3}$AD,
∵EF∥DH,
∴△AEF∽△ADH,
∴$\frac{EF}{DH}$=$\frac{AE}{AD}$=$\frac{1}{3}$,
∵DH=6,
∴EF=2,
∴$\frac{OE}{OA}=\frac{OA-2}{OA}=\frac{\sqrt{3}}{2}$,
∵OF=OA,
∴OE=OA-2
∵∠AOE=30°,
解得:OA=8+4$\sqrt{3}$.
点评 本题考查了切线的判定,平行四边形的性质,直角三角形的性质,等边三角形的判定和性质,连接OB构造等边三角形是解题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com