精英家教网 > 初中数学 > 题目详情
2.先化简,再求值:$\frac{{x}^{2}-4}{x+2}$÷$\frac{x-2}{{x}^{2}+4}$,其中x=-$\sqrt{3}$.

分析 先根据分式的除法法则把原式进行化简,再把x=-$\sqrt{3}$代入进行计算即可.

解答 解:原式=$\frac{(x-2)(x+2)}{x+2}$•$\frac{{x}^{2}+4}{x-2}$
=x2+4,
当x=-$\sqrt{3}$时,原式=3+4=7.

点评 本题考查的是分式的化简求值,熟知分式的乘除法则是解答此题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

12.阅读理解:运用“同一图形的面积相等”可以证明一些含有线段的等式成立,这种解决问题的方法我们称之为面积法.如图1,在等腰△ABC中,AB=AC,AC边上的高为h,点M为底边BC上的任意一点,点M到腰AB、AC的距离分别为h1、h2,连接AM,利用S△ABC=S△ABM+S△ACM,可以得出结论:h=h1+h2
类比探究:在图1中,当点M在BC的延长线上时,猜想h、h1、h2之间的数量关系并证明你的结论.
拓展应用:如图2,在平面直角坐标系中,有两条直线l1:y=$\frac{3}{4}$x+3,l2:y=-3x+3,
若l2上一点M到l1的距离是1,试运用“阅读理解”和“类比探究”中获得的结论,求出点M的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

13.如图所示,某人从甲地出发,骑摩托车去乙地,途中因车出现故障而停车修理,到达乙地时正好用了2小时,已知摩托车行驶的路程s(千米)与行驶的时间t(时)之间的函数关系由下面的图象OBCD给出,若这辆摩托车平均每行驶100千米的耗油量为2升,则从甲地到乙地,这辆摩托车耗油量为0.9升,车修好后,摩托车的速度为30千米/小时.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.(1)解方程:x2+4x-5=0;
(2)解不等式组$\left\{\begin{array}{l}{2x-1≥5}\\{8-4x<0}\end{array}\right.$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.如图,在?ABCD中,M,N分别是AD,BC的中点,∠AND=90°,连接CM交DN于点O.
(1)求证:△ABN≌△CDM;
(2)连接MN,求证四边形MNCD是菱形.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.甲、乙两辆汽车沿同一路线从A地前往B地,甲以a千米/时的速度匀速行驶,途中出现故障后停车维修,修好后以2a千米/时的速度继续行驶;乙在甲出发2小时后匀速前往B地,设甲、乙两车与A地的路程为s(千米),甲车离开A地的时间为t(时),s与t之间的函数图象如图所示.
(1)求a和b的值.
(2)求两车在途中相遇时t的值.
(3)当两车相距60千米时,t=$\frac{6}{5}$或$\frac{14}{5}$时.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.(1)已知4x=3y,求代数式(x-2y)2-(x-y)(x+y)-2y2的值.
(2)计算:π0+2-1-$\sqrt{\frac{1}{4}}$-|-$\frac{1}{3}$|.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.计算:(-1)2017+3(tan60°)-1-|1-$\sqrt{3}$|+(3.14-π)0

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.一辆汽车开往距离出发地160km的目的地,出发后第一小时内按原计划的速度匀速行驶.一小时后以原来速度的1.5倍匀速行驶,比原计划提前20min到达目的地,求前一小时的行驶速度.

查看答案和解析>>

同步练习册答案