分析 (1)根据速度=路程÷时间即可求出a值,再根据时间=路程÷速度算出b到5.5之间的时间段,由此即可求出b值;
(2)观察图形找出两点的坐标,利用待定系数法即可求出s乙关于t的函数关系式,令s乙=150即可求出两车相遇的时间;
(3)分0≤t≤3、3≤t≤4和4≤t≤5.5三段求出s甲关于t的函数关系式,二者做差令其绝对值等于60即可得出关于t的函数绝对值符号的一元一次方程,解之即可求出t值,再求出0≤t≤2时,s甲=50t=60中t的值.综上即可得出结论.
解答 解:(1)a=$\frac{150}{3}$=50,
b=5.5-$\frac{300-150}{2×50}$=4.
(2)设乙车与A地的路程s与甲车离开A地的时间t之间的函数关系式为s乙=kt+m,
将(2,0)、(5,300)代入s=kt+m,
$\left\{\begin{array}{l}{0=2k+m}\\{300=5k+m}\end{array}\right.$,解得:$\left\{\begin{array}{l}{k=100}\\{m=-200}\end{array}\right.$,
∴s乙=100t-200(2≤t≤5).
当s乙=100t-200=150时,t=3.5.
答:两车在途中相遇时t的值为3.5.
(3)当0≤t≤3时,s甲=50t;
当3≤t≤4时,s甲=150;
当4≤t≤5.5时,s甲=150+2×50(t-4)=100t-250.
∴s甲=$\left\{\begin{array}{l}{50t(0≤t≤3)}\\{150(3≤t≤4)}\\{100t-250(4≤t≤5.5)}\end{array}\right.$.
令|s甲-s乙|=60,即|50t-100t+200|=60,|150-100t+200|=60或|100t-250-100t+200|=60,
解得:t1=$\frac{14}{5}$,t2=$\frac{26}{5}$(舍去),t3=$\frac{29}{10}$(舍去),t4=$\frac{41}{10}$(舍去);
当0≤t≤2时,令s甲=50t=60,解得:t=$\frac{6}{5}$.
综上所述:当两车相距60千米时,t=$\frac{6}{5}$或$\frac{14}{5}$.
故答案为:$\frac{6}{5}$或$\frac{14}{5}$.
点评 本题考查了一次函数的应用、待定系数法求函数解析式以及解含绝对值符号的一元一次方程,解题的关键是:(1)根据数量关系列式计算;(2)根据点的坐标利用待定系数法求出函数关系式;(3)根据数量关系求出s甲关于t的函数关系式.
科目:初中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | B. | C. | D. |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com