精英家教网 > 初中数学 > 题目详情
19.如图,Rt△ABC中,∠C=90°,AC=BC=2,正方形CDEF的顶点D、F分别在AC、BC上,C、D两点不重合,设CD的长度为x,Rt△ABC与正方形CDEF重叠部分的面积为y,则下列中能表示y与x之间的关系的是(  )
A.B.C.D.

分析 分类讨论:当0<x≤1时,根据正方形的面积公式得到y=x2;当1<x≤2时,ED交AB于M,EF交AB于N,利用重叠的面积等于正方形的面积减去等腰直角三角形MNE的面积得到y=x2-2(x-1)2,配方得到y=-(x-2)2+2,然后根据二次函数的性质对各选项进行判断.

解答 解:当0<x≤1时,y=x2
当1<x≤2时,ED交AB于M,EF交AB于N,如图,
CD=x,则AD=2-x,
∵Rt△ABC中,AC=BC=2,
∴△ADM为等腰直角三角形,
∴DM=2-x,
∴EM=x-(2-x)=2x-2,
∴S△ENM=$\frac{1}{2}$(2x-2)2=2(x-1)2
∴y=x2-2(x-1)2=-x2+4x-2=-(x-2)2+2,
∴y=$\left\{\begin{array}{l}{{x}^{2},(0<x≤1)}\\{-(x-2)^{2}+2,(1<x≤2)}\end{array}\right.$.
故选:B.

点评 本题考查了动点问题的函数图象:通过看图获取信息,不仅可以解决生活中的实际问题,还可以提高分析问题、解决问题的能力.用图象解决问题时,要理清图象的含义即会识图.也考查了等腰直角三角形的性质.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

9.某校为丰富学生的校园生活,准备从某体育用品商店一次性购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),若购买3个足球和2个篮球共需310元,购买2个足球和5个篮球共需500元.
(1)购买一个足球,一个篮球各需多少元?
(2)根据学校的实际情况,需从该体育用品商店一次性购买足球和篮球共96个,要求购买足球和篮球的总费用不超过5720元,这所中学最多可以购买多少个篮球?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.(1)解方程:x2+4x-5=0;
(2)解不等式组$\left\{\begin{array}{l}{2x-1≥5}\\{8-4x<0}\end{array}\right.$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.甲、乙两辆汽车沿同一路线从A地前往B地,甲以a千米/时的速度匀速行驶,途中出现故障后停车维修,修好后以2a千米/时的速度继续行驶;乙在甲出发2小时后匀速前往B地,设甲、乙两车与A地的路程为s(千米),甲车离开A地的时间为t(时),s与t之间的函数图象如图所示.
(1)求a和b的值.
(2)求两车在途中相遇时t的值.
(3)当两车相距60千米时,t=$\frac{6}{5}$或$\frac{14}{5}$时.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.(1)已知4x=3y,求代数式(x-2y)2-(x-y)(x+y)-2y2的值.
(2)计算:π0+2-1-$\sqrt{\frac{1}{4}}$-|-$\frac{1}{3}$|.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.(1)计算:$\sqrt{4}$+20170-|$\sqrt{3}$-2|+1
(2)计算:$\frac{{x}^{2}+4x+4}{{x}^{2}+2x}$÷(2x-$\frac{4+{x}^{2}}{x}$)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.计算:(-1)2017+3(tan60°)-1-|1-$\sqrt{3}$|+(3.14-π)0

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.如图(1),抛物线 y=-$\frac{3}{16}$x2平移后过点A(8,0)和原点,顶点为B,对称轴与x轴相交于点C,与原抛物线相交于点D.

(1)求平移后抛物线的解析式及点D的坐标;
(2)直接写出阴影部分的面积 S阴影
(3)如图(2),直线AB与y轴相交于点P,点M为线段OA上一动点(点M不与点A,O重合 ),∠PMN为直角,MN与AP相交于点N,设OM=t,试探究:t为何值时,△MAN为等腰三角形?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.设点Q到图形W上每一个点的距离的最小值称为点Q到图形W的距离.例如正方形ABCD满足A(1,0),B(2,0),C(2,1),D(1,1),那么点O(0,0)到正方形ABCD的距离为1.
(1)如果⊙P是以(3,4)为圆心,1为半径的圆,那么点O(0,0)到⊙P的距离为4;
(2)求点M(3,0)到直线y=2x+1的距离;
(3)如果点N(0,a)到直线y=2x+1的距离为3,求a的值.

查看答案和解析>>

同步练习册答案