为了更好治理流溪河水质,保护环境,市治污公司决定购买10台污水处理设备.现有A,B两种型号的设备,其中每台的价格,月处理污水量如表:
| A型 | B型 |
价格(万元/台) | a | b |
处理污水量(吨/月) | 240 | 200 |
经调查:购买一台A型设备比购买一台B型设备多2万元,购买2台A型设备比购买3台B型设备少6万元.
(1)求a,b的值.
(2)经预算:市治污公司购买污水处理设备的资金不超过105万元,你认为该公司有哪几种购买方案.
(3)在(2)问的条件下,若每月要求处理流溪河两岸的污水量不低于2040吨,为了节约资金,请你为治污公司设计一种最省钱的购买方案.
(1)a=12,b=10;(2)有三种购买方案:①A型设备0台,B型设备10台;②A型设备1台,B型设备9台;③A型设备2台,B型设备8台.(3)为了节约资金,应选购A型设备1台,B型设备9台.
【解析】
试题分析:(1)根据“购买一台A型设备比购买一台B型设备多2万元,购买2台A型设备比购买3台B型设备少6万元”即可列出方程组,继而进行求解;
(2)可设购买污水处理设备A型设备x台,B型设备(10-x)台,则有12x+10(10-x)≤105,解之确定x的值,即可确定方案;
(3)因为每月要求处理流溪河两岸的污水量不低于2040吨,所以有240x+200(10-x)≥2040,解之即可由x的值确定方案,然后进行比较,作出选择.
试题解析:(1)根据题意得:
,
∴
;
(2)设购买污水处理设备A型设备x台,B型设备(10-x)台,
则:12x+10(10-x)≤105,
∴x≤2.5,
∵x取非负整数,
∴x=0,1,2,
∴有三种购买方案:
①A型设备0台,B型设备10台;
②A型设备1台,B型设备9台;
③A型设备2台,B型设备8台.
(3)由题意:240x+200(10-x)≥2040,
∴x≥1,
又∵x≤2.5,x取非负整数,
∴x为1,2.
当x=1时,购买资金为:12×1+10×9=102(万元),
当x=2时,购买资金为:12×2+10×8=104(万元),
∴为了节约资金,应选购A型设备1台,B型设备9台.
考点:1.一元一次不等式的应用;2.二元一次方程组的应用.
科目:初中数学 来源:2016届山东省泰安市泰山区初一下学期期末考试数学试卷(解析版) 题型:选择题
如图,点O在直线AB上,射线OC平分∠AOD,若∠AOC=35°,则∠BOD等于( )
A.145° B.110° C.70° D.35°
![]()
查看答案和解析>>
科目:初中数学 来源:2016届天津市河西区七年级下学期期末考试数学试卷(解析版) 题型:解答题
甲、乙两人从相距36千米的两地相向而行.如果甲比乙先走2小时,那么他们在乙出发2.5小时后相遇;如果乙比甲先走2小时,那么他们在甲出发3小时后相遇.问甲、乙两人每小时各走多少千米?
查看答案和解析>>
科目:初中数学 来源:2016届北京市通州区七年级下学期期末数学试卷(解析版) 题型:解答题
直线l1平行于直线l2,直线l3、l4分别与l1、l2交于点B、F和A、E,点D是直线l3上一动点,DC∥AB交l4于点C.
(1)如图,当点D在l1、l2两线之间运动时,试找出∠BAD、∠DEF、∠ADE之间的关系,并说明理由;
(2)当点D在l1、l2两线外侧运动时,试探究∠BAD、∠DEF、∠ADE之间的关系(点D和B、F不重合),画出图形,给出结论,不必说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com