【题目】二次函数y=ax2+bx+c(a≠0)的大致图象如图所示,顶点坐标为(﹣2,﹣9a),下列结论:①abc<0;②4a+2b+c>0;③5a﹣b+c=0;④若方程a(x+5)(x﹣1)=﹣1有两个根x1和x2,且x1<x2,则﹣5<x1<x2<1;⑤若方程|ax2+bx+c|=1有四个根,则这四个根的和为﹣8,其中正确的结论有( )
A.①②③④B.①②③⑤C.②③④⑤D.①②④⑤
【答案】D
【解析】
根据开口方向、对称轴、与y轴的交点可判断①;根据顶点坐标为(﹣2,﹣9a),求出b、c与a的关系,可判断②和③;先求出抛物线与x轴的交点,可判断④;根据根与系数的关系可判断⑤.
解:∵抛物线的开口向上,则a>0,对称轴在y轴的左侧,则b>0,交y轴的负半轴,则c<0,
∴abc<0,所以①结论正确;
∵抛物线的顶点坐标(-2,-9a),
∴,,
∴b=4a,c=-5a,
∴抛物线的解析式为y=ax2+4ax-5a,
∴4a+2b+c=4a+8a-5a=7a>0,所以②结论正确,
5a-b+c=5a-4a-5a=-4a<0,故③结论正确,
对于方程ax2+4ax-5a=0,
∵a>0,
∴x2+4x-5=0,
解得x1=-5,x2=1,
∴抛物线y=ax2+4ax-5a交x轴于(-5,0),(1,0),
∴若方程a(x+5)(x-1)=-1有两个根x1和x2,且x1<x2,则-5<x1<x2<1,故结论④正确,
若方程|ax2+bx+c|=1有四个根,设方程ax2+bx+c=1的两根分别为x1,x2,则,可得x1+x2=-4,设方程ax2+bx+c=-1的两根分别为x3,x4,则,可得x3+x4=-4,所以这四个根的和为-8,故结论⑤正确.
故选:D.
科目:初中数学 来源: 题型:
【题目】如图,在ABCD中,AB=6,AD=9,∠BAD的平分线交BC于点E,交DC的延长线于点F,BG⊥AE,垂足为G,若BG=,则△CEF的面积是( )
A.B.C.D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图是二次函数图像的一部分,对称轴是直线x=﹣2.关于下列结论:①ab<0;②;③;④;⑤方程的两个根为,其中正确的结论有( )
A.①③④B.②④⑤C.①②⑤D.②③⑤
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,平行四边形ABCD,对角线AC与BD相交于点E,点G为AD的中点,连接CG,CG的延长线交BA的延长线于点F,连接FD.
(1)求证:AB=AF;
(2)若AG=AB,∠BCD=120°,判断四边形ACDF的形状,并证明你的结论.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知关于x的一元二次方程x2+(2m+1)x+m2﹣2=0.
(1)若该方程有两个实数根,求m的最小整数值;
(2)若方程的两个实数根为x1,x2,且(x1﹣x2)2+m2=21,求m的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一农户要建一个矩形猪舍,猪舍的一边利用长为15m的住房墙,另外三边用27m长的建筑材料围成,为方便进出,在垂直于住房墙的一边留一个1m宽的门,所围矩形猪舍的长,宽分别为多少米时,猪舍面积为96m2?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】水城门位于淀浦河和漕港河三叉口,是环城水系公园淀浦河梦蝶岛区域重要的标志性景观.在课外实践活动中,某校九年级数学兴趣小组决定测量该水城门的高.他们的操作方法如下:如图,先在D处测得点A的仰角为20°,再往水城门的方向前进13米至C处,测得点A的仰角为31°(点D、C、B在一直线上),求该水城门AB的高.(精确到0.1米)
(参考数据:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36,sin31°≈0.52,cos31°≈0.86,tan31°≈0.60)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线与轴交于,两点,与轴交于点,,直线与抛物线交于点,,与轴交于点.
(1)求抛物线的解析式;
(2)点是线段上的一动点(不与,重合),过点作轴的垂线,交轴于点,交抛物线于点,若,线段是否存在最大值?若存在,请求出最大值,若不存在,请说明理由;
(3)若轴上存在一点,使得时,求出点的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com