【题目】如图,已知点A是反比例函数 的图象上的一个动点,连接OA,若将线段O A绕点O顺时针旋转90°得到线段OB,则点B所在图象的函数表达式为 .
【答案】
【解析】∵点A是反比例函数 的图象上的一个动点,设A(m,n),过A作AC⊥x轴于C,过B作BD⊥x轴于D,
∴AC=n,OC=﹣m,
∴∠ACO=∠ADO=90°,
∵∠AOB=90°,
∴∠CAO+∠AOC=∠AOC+∠BOD=90°,
∴∠CAO=∠BOD,
在△ACO与△ODB中,
∵∠ACO=∠ODB,∠CAO=∠BOD,AO=BO,
∴△ACO≌△ODB,
∴AC=OD=n,CO=BD=﹣m,
∴B(n,﹣m),
∵mn=﹣2,
∴n(﹣m)=2,
∴点B所在图象的函数表达式为 ,
故答案为: .
过A作AC⊥x轴于C,过B作BD⊥x轴于D,根据旋转的性质得出AO=BO,再证明∠ACO=∠ODB,∠CAO=∠BOD,可得出OC=BD,AC=OD,然后求出mn的值即可得出点B所在图象的函数解析式。
科目:初中数学 来源: 题型:
【题目】如图,在ABCD中 过点A作AE⊥DC,垂足为E,连接BE,F为BE上一点,且∠AFE=∠D.
(1)求证:△ABF∽△BEC;
(2)若AD=5,AB=8,sinD= ,求AF的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】课外兴趣小组活动时,老师提出了如下问题:
(1)如图1,中,若,,求边上的中线的取值范围.小明在组内经过合作交流,得到了如下的解决方法:将绕点逆时针旋转得到,把、、集中在中,利用三角形的三边关系可得,则;
(2)问题解决:受到(1)的启发,请你证明下面命题:如图2,在中,是边上的中点,,交于点,交于点,连接.
①求证:;
②如图3,若,探索线段、、之间的等量关系,并加以证明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知AD∥BC,∠3+∠4=180°,要证∠1=∠2,请完善证明过程,并在括号内填上相应依据:
∵AD∥BC(已知)
∴∠l=∠3( ),
∵∠3+∠4=180°(已知),
∴BE∥DF( ),
∴ = ( ).
∴∠1=∠2( ).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平行四边形ABCD中,AE⊥BC,CF⊥AD,垂足分别为E,F,AE,CF分别与BD交于点G和H,且AB= .
(1)若tan∠ABE =2,求CF的长;
(2)求证:BG=DH.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点在边上,点为边上一动点,连接与关于所在直线对称,点分别为的中点,连接并延长交所在直线于点,连接.当为直角三角形时,的长为_________ .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】类比思想就是根据已经学习过的知识,类比探究新知识的思想方法.我们在探究矩形、菱形、正方形等问题中的数量关系时,经常用到类比思想.某数学兴趣小组在数学课外活动中,研究三角形和正方形的性质时,做了如下探究:在中,点为直线上一动点(点不与重合),以为边在右侧作正方形连接.
(1)(观察猜想)如图①,当点在线段上时;
①与的位置关系为: ;
②之间的数量关系为: ;(将结论直接写在横线上)
(2)(数学思考)如图②,当点在线段的延长线上时,结论①②是否仍然成立?若成立,请给予证明;若不成立,请你写出正确结论再给予证明;
(3)(拓展延伸)如图③,当点在线段的延长线上时,延长交于点,连接.若已知请直接写出的长.(提示: .过作于过作于于)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,地面上小山的两侧有A,B两地,为了测量A,B两地的距离,让一热气球从小山西侧A地出发沿与AB成30°角的方向,以每分钟40m的速度直线飞行,10分钟后到达C处,此时热气球上的人测得CB与AB成70°角,请你用测得的数据求A,B两地的距离AB长.(结果用含非特殊角的三角函数和根式表示即可)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com