【题目】一次函数图象与反比例函数的图象交于点M、N.
(1)求这两个函数的表达式;
(2)根据图象写出使的自变量的取值范围.
【答案】(1), y=2x-2;(2)x<-1或0<x<2.
【解析】
(1)先把N点坐标代入求出k,确定反比例解析式,再利用反比例解析式确定M点坐标,然后利用待定系数法求一次函数解析式;
(2)观察函数图象得到当x<-1或0<x<2时,反比例函数图象都在一次函数图象上方,即反比例函数值大于一次函数值.
(1)把N(-1,-4)代入得k=-1×(-4)=4,
所以反比例函数解析式为;
把M(2,m)代入得m=,
解得m=2,
即M点坐标为(2,2),
把M(2,2)、N(-1,-4)代入y=ax+b得,
解得,
所以一次函数解析式为y=2x-2;
(2)由图象可得,使的自变量的取值范围为x<-1或0<x<2.
科目:初中数学 来源: 题型:
【题目】观察下面一列有序数对:(1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(1,4),(2,3),(3,2),(4,1),(1,5),(2,4),…,按这些规律,第50个有序数对是( )
A. (3,8)B. (4,7)C. (5,6)D. (6,5)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】数轴是学习有理数的一种重要工具,任何有理数都可以用数轴上的点表示,这样能够运用数形结合的方法解决一些问题.
如图,将一条数轴在原点O和点B处各折一下,得到一条“折线数轴”.图中点A表示-10,点B表示10,点C表示18,我们称点A和点C在数轴上相距28个长度单位.动点P从点A出发,以2单位秒的速度沿着折线数抽”的正方向运动,从点O运动到点B期间速度变为原来的一半,之后立刻恢复原速;同时,动点Q从点C出发,以1单位秒的速度沿着数轴的负方向运动,从点B运动到点O期间速度变为原来的两倍,之后也立刻恢复原速.当点P到达点C时,两点都停上远动.设运动的时间为1秒.问:
(1)t=2秒时,点P在“折线数轴”上所对应的数是_______;点P到点Q的距离是_____单位长度;
(2)动点P从点4运动至C点需要_______秒;
(3)P、Q两点相遇时,求出t的值和此时相遇点M在“折线数轴”上所对应的数;
(4)如果动点P、O两点在数轴上相距的长度与Q、B两点在数轴上相距的长度相等,直接写出t的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形ABCD中,AB=12,点E在边CD上,且BG=CG,将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连接AG、CF.下列结论:①△ABG≌△AFG;②∠EAG=450;③CE=2DE;④AG∥CF;⑤S△FGC=.其中正确结论的个数是( )
A. 2个 B. 3个 C. 4个 D. 5个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】暑假期间,小明和父母一起开车到距家200千米的景点旅游.出发前,汽车油箱内储油45升,当行驶150千米时,发现油箱剩余油量为30升.(假设行驶过程中汽车的耗油量是均匀的.)
(1)写出用行驶路程x(千米)来表示剩余油量Q(升)的代数式;
(2)当x=300千米时,求剩余油量Q的值;
(3)当油箱中剩余油量少于3升时,汽车将自动报警.如果往返途中不加油,他们能否在汽车报警前回到家?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小明学习电学知识后,用四个开关按键(每个开关键闭合的可能性相等)、一个电源和一个灯泡设计了一个电路图
(1)若小明设计的电路图(四个开关按键都处于打开状态)如图所示,求任意闭合一个开关按键,灯泡能发光的概率;
(2)若小明设计的电路图(四个开关按键都处于打开状态)如图所示,求同时闭合其中的两个开关按键,灯泡能发光的概率.(用列表或树状图法)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在边长为1的小正方形组成的网格中,把一个点先沿水平方向平移丨a丨格(当a为正数时,表示向右平移;当a为负数时,表示向左平移),再沿竖直方向平移丨b|格(当b为正数时,表示向上平移;当b为负数时,表示向下平移),得到一个新的点,我们把这个过程记为(a,b)例如在图1中.从A到B记为:A→B(+1,+3)从c到D记为:C→D(+3,一3),请回答下列问题:
(1)如图1,若点A的运动路线为:A→B→D→A,请计算点A运动过的总路程;
(2)若点A运动的路线依次为:A→M(+2,+3)A→N(+1,―1),N→P
(-2,+2)P→Q(+4,—4)请你依次在图2上标出点M,N,P,Q的位置.
(3)在图2中,若点A经过(m,n)得到点E,点E再经过(p、,q)后得到Q,则m与p满足的数量关系是___________;n与q满足的数量关系是________________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(本题满分9分)
刘卫同学在一次课外活动中,用硬纸片做了两个直角三角形,见图①、②.图①中,,,;图②中,,,.图③是刘卫同学所做的一个实验:他将的直角边与的斜边重合在一起,并将沿方向移动.在移动过程中,、两点始终在边上(移动开始时点与点重合).
(1)在沿方向移动的过程中,刘卫同学发现:、两点间的距离逐渐 ▲ .
(填“不变”、“变大”或“变小”)
(2)刘卫同学经过进一步地研究,编制了如下问题:
问题①:当移动至什么位置,即的长为多少时,、的连线与平行?
问题②:当移动至什么位置,即的长为多少时,以线段、、的长度为三边长的三角形是直角三角形?
问题③:在的移动过程中,是否存在某个位置,使得?如果存在,
求出的长度;如果不存在,请说明理由.
请你分别完成上述三个问题的解答过程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com