精英家教网 > 初中数学 > 题目详情
如图,OABC是边长为1的正方形,OC与x轴正半轴的夹角为15°,点B在抛物线(a<0)的图象上,则a的值为 (    )  
 
A.B.C.D.
C

试题分析:连接OB,过B作BD⊥x轴于D,若OC与x轴正半轴的夹角为15°,那么∠BOD=30°;在正方形OABC中,已知了边长,易求得对角线OB的长,进而可在Rt△OBD中求得BD、OD的值,也就得到了B点的坐标,然后将其代入抛物线的解析式中,即可求得待定系数a的值.
连接OB,过B作BD⊥x轴于D

则∠BOC=45°,∠BOD=30°;
已知正方形的边长为1,则OB=
Rt△OBD中,OB=,∠BOD=30°,则:


代入抛物线的解析式中,得:

解得
故选C.
点评:本题综合性强,难度较大,是中考常见题,能够正确地构造出与所求相关的直角三角形是解决问题的关键.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系中,将一块等腰直角三角板ABC斜靠在两坐标轴上放在第二象限,点C的坐标为(-1,0).B点在抛物线的图象上,过点B作轴,垂足为D,且B点横坐标为

(1)求证:
(2)求BC所在直线的函数关系式;
(3)抛物线的对称轴上是否存在点P,使 △ACP是以AC为直角边的直角三角形?若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知,如图,A,B分别在x轴和y轴上,且OA=2OB,直线y1=kx+b经过A点与抛物线y2=-x2+2x+3交于B,C两点,
(1)试求k,b的值及C点坐标;
(2)x取何值时y1,y2均随x的增大而增大;
(3)x取何值时y1>y2

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

将抛物线向左平移2个单位,所得抛物线的表达式为        

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

将二次函数化为的形式为_________。

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

二次函数的图象如图所示,则下列结论中正确的是:(  )

A  a>0  b<0  c>0  
B  a<0  b<0  c>0
C  a<0  b>0  c<0
D  a<0  b>0  c>0

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

一条抛物线具有下列特征:(1)经过点A(0,3);(2)在x轴左侧的部分是上升的,在x轴右侧的部分是下降的,试写出一条满足这两条特征的抛物线的表达式:               

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

【问题情境】
已知矩形的面积为a(a为常数,a>0),当该矩形的长为多少时,它的周长最小?最小值是多少?
【数学模型】
设该矩形的长为x,周长为y,则y与x的函数关系式为
【探索研究】
(1)我们可以借鉴以前研究函数的经验,先探索函数的图象和性质.
①填写下表,画出函数的图象;
x




1
2
3
4

y

 
 
 
 
 
 
 


②观察图象,写出该函数两条不同类型的性质;
③在求二次函数y=ax2+bx+c(a≠0)的最大(小)值时,除了通过观察图象,还可以通过配方得到.请你通过配方求函数的最小值.
【解决问题】用上述方法解决“问题情境”中的问题,直接写出答案.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

抛物线的顶点坐标是(      )
A.(-1,-2)B.(-1,2)C.(1,-2)D.(1,2)

查看答案和解析>>

同步练习册答案