精英家教网 > 初中数学 > 题目详情

【题目】如图,在ABCD,点O是边BC的中点,连接DO并延长,交AB的延长线于点E,连接BDEC

1)求证:四边形BECD是平行四边形;

2)若∠BOD100°,则当∠A   时,四边形BECD是矩形.

【答案】(1)证明见解析;(2)50°.

【解析】

(1)AAS证明BOE≌△COD,得出OEOD,即可得出结论;

(2)由平行四边形的性质得出∠BCD=∠A50°,由三角形的外角性质求出∠ODC=∠BCD,得出OCOD,证出DEBC,即可得出结论.

(1)证明:∵四边形ABCD为平行四边形,

ABDCABCD

∴∠OEB=∠ODC

又∵OBC的中点,

BOCO

BOECOD中,

∴△BOE≌△COD(AAS)

OEOD

∴四边形BECD是平行四边形;

(2)解:若∠BOD100°,则当∠A50°时,四边形BECD是矩形.理由如下:

∵四边形ABCD是平行四边形,

∴∠BCD=∠A50°

∵∠BOD=∠BCD+ODC

∴∠ODC100°50°50°=∠BCD

OCOD

BOCOODOE

DEBC

∵四边形BECD是平行四边形,

∴四边形BECD是矩形;

故答案是:50°

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,从热气球C上测得两建筑物AB底部的俯角分别为30°60度.如果这时气球的高度CD90米.且点ADB在同一直线上,求建筑物AB间的距离.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知抛物线C1y1axh2+2,直线1y2kxkh+2k0).

1)求证:直线l恒过抛物线C的顶点;

2)若a0h1,当txt+3时,二次函数y1axh2+2的最小值为2,求t的取值范围.

3)点P为抛物线的顶点,Q为抛物线与直线l的另一个交点,当1k3时,若线段PQ(不含端点PQ)上至少存在一个横坐标为整数的点,求a的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】八(2)班组织了一次经典诵读比赛,甲、乙两队各10人的比赛成绩如下表(10分制):

7

8

9

7

10

10

9

10

10

10

10

8

7

9

8

10

10

9

10

9

(1)甲队成绩的中位数是 分,乙队成绩的众数是 分;

(2)计算乙队的平均成绩和方差;

(3)已知甲队成绩的方差是1.4,则成绩较为整齐的是 队.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,中,.从点 出发,沿着运动,速度为个单位/,在点运动的过程中,以为圆心的圆始终与斜边相切,设⊙的面积为,点的运动时间为)(.

1)当时, ;(用含的式子表示)

2)求的函数表达式;

3)在⊙P运动过程中,当⊙P与三角形ABC的另一边也相切时,直接写出t的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,若二次函数y=ax2+bx+c(a≠0)图象的对称轴为x=1,与y轴交于点C,与x轴交于点A、点B(﹣1,0),则

①二次函数的最大值为a+b+c;

a﹣b+c<0;

b2﹣4ac<0;

④当y>0时,﹣1<x<3,其中正确的个数是(  )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数y=﹣x2+x+6及一次函数yx+m,将该二次函数在x轴上方的图象沿x轴翻折到x轴下方,图象的其余部分不变,得到一个新图象(如图所示),当直线yx+m与这个新图象有四个交点时,m的取值范围是_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC中,∠BAC的内角平分线与外角平分线分别交BCBC的延长线于点PQ

1)求∠PAQ的大小;

2)若点MPQ的中点,求证:PM2CM·BM

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在Rt△ABC中,∠C=90°,AD平分∠BACBC于点D,OAB上一点,经过点A,D⊙O分别交AB,AC于点E,F,连接OFAD于点G.

(1)求证:BC⊙O的切线;

(2)AB=x,AF=y,试用含x,y的代数式表示线段AD的长;

(3)BE=8,sinB=,求DG的长,

查看答案和解析>>

同步练习册答案