精英家教网 > 初中数学 > 题目详情

【题目】如图,△ABC中,∠BAC的内角平分线与外角平分线分别交BCBC的延长线于点PQ

1)求∠PAQ的大小;

2)若点MPQ的中点,求证:PM2CM·BM

【答案】见解析

【解析】

1)由角平分线的性质及∠BAD为平角直接可得;(2)由于线段PMCMBM在同一条直线上,所以必须把某条线段转化为另一相等的线段,构造相似三角形,因此,可证PMAM,从而证明△ACM△ABM相似即可.

解:

1∵AP平分∠BAC

∵AQ平分∠CAD

∵∠BAC∠CAD∠180°∴∠PAC∠CAQ90°,即∠PAQ90°

2)证明:如图,连接AM∵∠PAQ90°MPQ的中点,∴PMAM∴∠APM∠PAM

∵∠APM∠B∠BAP∠PAM∠CAM∠PAC

∴∠B∠CAM∵∠AMC∠BMA

∴△ACM∽△BAM

∴AM2CM·BM,即PM2CM·BM

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知直线轴,轴分别交于点,与直线交于点.从点出发以每秒1个单位的速度向点运动,运动时间设为.

1)求点的坐标;

2)求下列情形的值;

①连结的面积平分;

②连结,若为直角三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某服装店用4500元购进一批衬衫,很快售完,服装店老板又用2100元购进第二批该款式的衬衫,进货量是第一次的一半,但进价每件比第一批降低了10元.

1)这两次各购进这种衬衫多少件?

2)若第一批衬衫的售价是200/件,老板想让这两批衬衫售完后的总利润不低于1950元,则第二批衬衫每件至少要售多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知△ABC中,ABACAD是角平分线,FBA延长线上的一点,AE平分∠FACDEBAAEE.求证:四边形ADCE是矩形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图的ABC中,ABACBC,且DBC上一点。现打算在AB上找一点P,在AC上找一点Q,使得APQ与以PDQ为顶点的三角形全等,以下是甲、乙两人的作法:

甲:连接AD,作AD的中垂线分别交ABACP点、Q点,则PQ两点即为所求;

乙:过D作与AC平行的直线交ABP点,过D作与AB平行的直线交ACQ点,则PQ两点即为所求;

对于甲、乙两人的作法,下列判断何者正确(  )?

A.两人皆正确B.两人皆错误C.甲正确,乙错误D.甲错误,乙正确

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:抛物线y=x26x+21.求:

1)直接写出抛物线y=x26x+21的顶点坐标;

2)当x2时,求y的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知中,.

1)如图1,在中,,连接,若,求证:

2)如图2,在中,,连接,若于点,求的长;

3)如图3,在中,,连接,若,求的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图:在ABC中,AB=13,BC=12,点D,E分别是AB,BC的中点,连接DE,CD,如果DE=2.5,那么ACD的周长是_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】根据对宁波市相关的市场物价调研,某批发市场内甲种水果的销售利润y1(千元)与进货量x(吨)近似满足函数关系y1=0.25x,乙种水果的销售利润y2(千元)与进货量x(吨)之间的函数y2=ax2+bx+c的图象如图所示.

(1)求出y2x之间的函数关系式;

(2)如果该市场准备进甲、乙两种水果共8吨,设乙水果的进货量为t吨,写出这两种水果所获得的销售利润之和W(千元)与t(吨)之间的函数关系式,并求出这两种水果各进多少吨时获得的销售利润之和最大,最大利润是多少?

查看答案和解析>>

同步练习册答案