【题目】如图,△ABC中,∠BAC的内角平分线与外角平分线分别交BC及BC的延长线于点P、Q.
(1)求∠PAQ的大小;
(2)若点M为PQ的中点,求证:PM2=CM·BM.
【答案】见解析
【解析】
(1)由角平分线的性质及∠BAD为平角直接可得;(2)由于线段PM、CM、BM在同一条直线上,所以必须把某条线段转化为另一相等的线段,构造相似三角形,因此,可证PM=AM,从而证明△ACM与△ABM相似即可.
解:
(1)∵AP平分∠BAC,∴,
又∵AQ平分∠CAD,∴.
∴.
又∵∠BAC+∠CAD=∠180°,∴∠PAC+∠CAQ=90°,即∠PAQ=90°.
(2)证明:如图,连接AM,∵∠PAQ=90°,M是PQ的中点,∴PM=AM,∴∠APM=∠PAM.
∵∠APM=∠B+∠BAP,∠PAM=∠CAM+∠PAC,
∴∠B=∠CAM,∵∠AMC=∠BMA,
∴△ACM∽△BAM.
∴.∴AM2=CM·BM,即PM2=CM·BM.
科目:初中数学 来源: 题型:
【题目】如图,已知直线与轴,轴分别交于点,,与直线交于点.点从点出发以每秒1个单位的速度向点运动,运动时间设为秒.
(1)求点的坐标;
(2)求下列情形的值;
①连结,把的面积平分;
②连结,若为直角三角形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某服装店用4500元购进一批衬衫,很快售完,服装店老板又用2100元购进第二批该款式的衬衫,进货量是第一次的一半,但进价每件比第一批降低了10元.
(1)这两次各购进这种衬衫多少件?
(2)若第一批衬衫的售价是200元/件,老板想让这两批衬衫售完后的总利润不低于1950元,则第二批衬衫每件至少要售多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知△ABC中,AB=AC,AD是角平分线,F为BA延长线上的一点,AE平分∠FAC,DE∥BA交AE于E.求证:四边形ADCE是矩形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图的△ABC中,AB>AC>BC,且D为BC上一点。现打算在AB上找一点P,在AC上找一点Q,使得△APQ与以P、D、Q为顶点的三角形全等,以下是甲、乙两人的作法:
甲:连接AD,作AD的中垂线分别交AB、AC于P点、Q点,则P、Q两点即为所求;
乙:过D作与AC平行的直线交AB于P点,过D作与AB平行的直线交AC于Q点,则P、Q两点即为所求;
对于甲、乙两人的作法,下列判断何者正确( )?
A.两人皆正确B.两人皆错误C.甲正确,乙错误D.甲错误,乙正确
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知中,.
(1)如图1,在中,,连接、,若,求证:
(2)如图2,在中,,连接、,若,于点,,,求的长;
(3)如图3,在中,,连接,若,求的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图:在△ABC中,AB=13,BC=12,点D,E分别是AB,BC的中点,连接DE,CD,如果DE=2.5,那么△ACD的周长是_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】根据对宁波市相关的市场物价调研,某批发市场内甲种水果的销售利润y1(千元)与进货量x(吨)近似满足函数关系y1=0.25x,乙种水果的销售利润y2(千元)与进货量x(吨)之间的函数y2=ax2+bx+c的图象如图所示.
(1)求出y2与x之间的函数关系式;
(2)如果该市场准备进甲、乙两种水果共8吨,设乙水果的进货量为t吨,写出这两种水果所获得的销售利润之和W(千元)与t(吨)之间的函数关系式,并求出这两种水果各进多少吨时获得的销售利润之和最大,最大利润是多少?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com