精英家教网 > 初中数学 > 题目详情

【题目】已知二次函数y=﹣x2+x+6及一次函数yx+m,将该二次函数在x轴上方的图象沿x轴翻折到x轴下方,图象的其余部分不变,得到一个新图象(如图所示),当直线yx+m与这个新图象有四个交点时,m的取值范围是_____

【答案】7m<﹣3

【解析】

如图,解方程﹣x2+x+6=0A(﹣20),B30),再利用折叠的性质求出折叠部分的解析式为y=x+2)(x3),即y=x2x6(﹣2x3),然后求出直线y=x+m经过点A(﹣20)时m的值和当直线y=x+m与抛物线y=x2x6(﹣2x3)有唯一公共点时m的值,从而得到当直线y=x+m与新图象有4个交点时,m的取值范围.

解:如图所示,过点B作直线yx+m1,将直线向下平移到恰在点C处相切,

则一次函数yx+m在两条直线之间时,两个图象有4个交点,

y=﹣x2+x+60,解得:x=﹣23,即点B坐标(30),

翻折抛物线的表达式为:y=(x3)(x+2)=x2x6(﹣2x3),

将一次函数与二次函数表达式联立并整理得:x22x6m0

b24ac4+46+m)=0,解得:m=﹣7

当一次函数过点B时,将点B坐标代入:yx+m得:03+m,解得:m=﹣3

所以当直线yx+m与这个新图象有四个交点时,m的取值范围是﹣7m<﹣3.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线y=ax2+bx+c(a0)的对称轴为直线x=﹣1,且抛物线经过A(1,0),C(0,3)两点,与x轴交于点B.

(1)若直线y=mx+n经过B、C两点,求直线BC和抛物线的解析式;

(2)在抛物线的对称轴x=﹣1上找一点M,使点M到点A的距离与到点C的距离之和最小,求出点M的坐标;

(3)设点P为抛物线的对称轴x=﹣1上的一个动点,求使BPC为直角三角形的点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,mn是一元二次方程x2+4x+3=0的两个实数根,且|m||n|,抛物线y=x2+bx+c的图象经过点Am0),B0n),如图所示.

1)求这个抛物线的解析式;

2)设(1)中的抛物线与x轴的另一个交点为C,抛物线的顶点为D,试求出点CD的坐标,并判断BCD的形状.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABCD,点O是边BC的中点,连接DO并延长,交AB的延长线于点E,连接BDEC

1)求证:四边形BECD是平行四边形;

2)若∠BOD100°,则当∠A   时,四边形BECD是矩形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某农户承包荒山种植某产品种蜜柚已知该蜜柚的成本价为8千克,投入市场销售时,调查市场行情,发现该蜜柚销售不会亏本,且每天销量千克与销售单价千克之间的函数关系如图所示.

yx的函数关系式,并写出x的取值范围;

当该品种蜜柚定价为多少时,每天销售获得的利润最大?最大利润是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在RtABC中,∠C=90°,以AC为直径作⊙O,交ABD,过点OOEAB,交BCE.

(1)求证:ED为⊙O的切线;

(2)如果⊙O的半径为,ED=2,延长EO交⊙OF,连接DF、AF,求ADF的面积.

【答案】(1)证明见解析;(2)

【解析】试题分析:(1)首先连接OD,由OEAB,根据平行线与等腰三角形的性质,易证得 即可得,则可证得的切线;
(2)连接CD,根据直径所对的圆周角是直角,即可得 利用勾股定理即可求得的长,又由OEAB,证得根据相似三角形的对应边成比例,即可求得的长,然后利用三角函数的知识,求得的长,然后利用SADF=S梯形ABEF-S梯形DBEF求得答案.

试题解析:(1)证明:连接OD

OEAB

∴∠COE=CADEOD=ODA

OA=OD,

∴∠OAD=ODA

∴∠COE=DOE

在△COE和△DOE中,

∴△COE≌△DOE(SAS),

EDOD

ED的切线;

(2)连接CD,交OEM

RtODE中,

OD=32,DE=2,

OEAB

∴△COE∽△CAB

AB=5,

AC是直径,

EFAB

SADF=S梯形ABEFS梯形DBEF

∴△ADF的面积为

型】解答
束】
25

【题目】【题目】已知,抛物线y=ax2+ax+b(a≠0)与直线y=2x+m有一个公共点M(1,0),且a<b.

(1)求ba的关系式和抛物线的顶点D坐标(用a的代数式表示);

(2)直线与抛物线的另外一个交点记为N,求DMN的面积与a的关系式;

(3)a=﹣1时,直线y=﹣2x与抛物线在第二象限交于点G,点G、H关于原点对称,现将线段GH沿y轴向上平移t个单位(t>0),若线段GH与抛物线有两个不同的公共点,试求t的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,平面直角坐标系中,直线y=2x+2与x轴,y轴分别交于A,B两点,与反比例函数y=(x>0)的图象交于点M(a,4).

(1)求反比例函数y=(x>0)的表达式;

(2)若点C在反比例函数y=(x>0)的图象上,点D在x轴上,当四边形ABCD是平行四边形时,求点D的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校举行汉字听写比赛,每位学生听写汉字39个,比赛结束后随机抽查部分学生的听写结果,以下是根据抽查结果绘制的统计图的一部分.

根据以上信息解决下列问题:

在统计表中,____________,并补全条形统计图.

扇形统计图中“C所对应的圆心角的度数是______

若该校共有1120名学生,如果听写正确的个数少于24个定为不合格,请你估计这所学校本次比赛听写不合格的学生人数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我国中东部地区雾霾天气趋于严重,环境治理已刻不容缓.我市某电器商场根据民众健康需要,代理销售某种家用空气净化器,其进价是200/台.经过市场销售后发现:在一个月内,当售价是400/台时,可售出200台,且售价每降低10元,就可多售出50台.若供货商规定这种空气净化器售价不能低于300/台,代理销售商每月要完成不低于450台的销售任务.

1)试确定月销售量y(台)与售价x(元/台)之间的函数关系式;并求出自变量x的取值范围;

2)当售价x(元/台)定为多少时,商场每月销售这种空气净化器所获得的利润w(元)最大?最大利润是多少?

查看答案和解析>>

同步练习册答案