精英家教网 > 初中数学 > 题目详情
9.如图1,正方形纸片ABCD的边长为2,翻折∠B、∠D,使两个直角的顶点重合于对角线BD上一点P、EF、GH分别是折痕(如图2).设AE=x(0<x<2),给出下列判断:
①当x=1时,点P是正方形ABCD的中心;
②当x=$\frac{1}{2}$时,EF+GH>AC;
③当0<x<2时,六边形AEFCHG面积的最大值是3;
④当0<x<2时,六边形AEFCHG周长的值不变.
其中正确的选项是(  )
A.①③B.①②④C.①③④D.①②③④

分析 (1)由正方形纸片ABCD,翻折∠B、∠D,使两个直角的顶点重合于对角线BD上一点P,得出△BEF和△三DGH是等腰直角三角形,所以当AE=1时,重合点P是BD的中点,即点P是正方形ABCD的中心;
(2)由△BEF∽△BAC,得出EF=$\frac{3}{4}$AC,同理得出GH=$\frac{1}{4}$AC,从而得出结论.
(3)由六边形AEFCHG面积=正方形ABCD的面积-△EBF的面积-△GDH的面积.得出函数关系式,进而求出最大值.
(4)六边形AEFCHG周长=AE+EF+FC+CH+HG+AG=(AE+CH)+(FC+AG)+(EF+GH)求解.

解答 解:(1)正方形纸片ABCD,翻折∠B、∠D,使两个直角的顶点重合于对角线BD上一点P,
∴△BEF和△DGH是等腰直角三角形,
∴当AE=1时,重合点P是BD的中点,
∴点P是正方形ABCD的中心;
故①结论正确,
(2)正方形纸片ABCD,翻折∠B、∠D,使两个直角的顶点重合于对角线BD上一点P,
∴△BEF∽△BAC,
∵x=$\frac{1}{2}$,
∴BE=2-$\frac{1}{2}$=$\frac{3}{2}$,
∴$\frac{BE}{BA}=\frac{EF}{AC}$,即$\frac{\frac{3}{2}}{2}=\frac{EF}{AC}$,
∴EF=$\frac{3}{4}$AC,
同理,GH=$\frac{1}{4}$AC,
∴EF+GH=AC,
故②结论错误,
(3)六边形AEFCHG面积=正方形ABCD的面积-△EBF的面积-△GDH的面积.
∵AE=x,
∴六边形AEFCHG面积=22-$\frac{1}{2}$BE•BF-$\frac{1}{2}$GD•HD=4-$\frac{1}{2}$×(2-x)•(2-x)-$\frac{1}{2}$x•x=-x2+2x+2=-(x-1)2+3,
∴六边形AEFCHG面积的最大值是3,
故③结论正确,
(4)当0<x<2时,
∵EF+GH=AC,
六边形AEFCHG周长=AE+EF+FC+CH+HG+AG=(AE+CH)+(FC+AG)+(EF+GH)=2+2+2$\sqrt{2}$=4+2$\sqrt{2}$故六边形AEFCHG周长的值不变,
故④结论正确.
故选C

点评 此题考查了翻折变换(折叠问题),菱形的性质,本题关键是得到EF+GH=AC,综合性较强,有一定的难度.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

19.若三角形的三边长分别为3,4,x,则x的值可能是(  )
A.1B.6C.7D.10

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.已知,如图,在△ABC中,∠ACB=90°,AE是角平分线,CD是高,AE、CD相交于点F,求证:∠CEF=∠CFE.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

17.已知,如图,△OBC中是直角三角形,OB与x轴正半轴重合,∠OBC=90°,且OB=1,BC=$\sqrt{3}$,将△OBC绕原点O逆时针旋转60°再将其各边扩大为原来的2倍,使OB1=OC,得到△OB1C1,将△OB1C1绕原点O逆时针旋转60°再将其各边扩大为原来的2倍,使OB2=OC1,得到△OB2C2,…,如此继续下去,得到△OB2015C2015,则点C2015的坐标是(22016,0).

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

4.如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,以点C为圆心,CA为半径的圆与AB交于点D,则AD的长为(  )
A.$\frac{18}{5}$B.$\frac{5}{2}$C.$\frac{24}{5}$D.$\frac{9}{5}$

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

14.如图,在平行四边形ABCD中,点E为边AD的中点,连接AC,BE交于点O,则S△AOE:S△COB=1:4.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.如图,△ABC中,AB=AC,以AB为直径作⊙O,交BC于点D,交CA的延长线于点E,连接AD、DE.
(1)求证:D是BC的中点;
(2)若DE=3,BD-AD=2,求⊙O的半径;
(3)在(2)的条件下,求弦AE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

18.如图,在⊙O中,直径AB⊥CD,垂足为E,∠BOD=48°,则∠BAC的大小是(  )
A.60°B.48°C.30°D.24°

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

19.填在下面各正方形中的四个数之间都有一定的规律,按此规律得出a+b+c=110.

查看答案和解析>>

同步练习册答案