精英家教网 > 初中数学 > 题目详情
如图,在平面直角坐标系中,已知A(-10,0),B(-8,6),O为坐标原点,△OAB沿AB翻折得到△PAB.将四边形OAPB先向下平移3个单位长度,再向右平移m(m>0)个单位长度,得到四边形O1A1P1B1.设四边形O1A1P1B1与四边形OA精英家教网PB重叠部分图形的周长为l.
(1)求A1、P1两点的坐标(用含m的式子表示);
(2)求周长L与m之间的函数关系式,并写出m的取值范围.
分析:(1)首先应求得点P的坐标.根据点B的坐标,运用勾股定理求得OB的长,发现OB=OA,再结合折叠,即四条边都相等的四边形是菱形,根据菱形的性质求得点P的坐标.再根据平移和点的坐标之间的联系:左减右加,由点A,P的坐标求得点A1、P1两点的坐标;
(2)由于向右移的单位长度不确定,所以此题应分情况考虑.根据勾股定理可以求得当向下平移3个单位长度时,P1到AP的距离是4,P1到y轴的距离是14,所以分为当0<m≤4时和当4<m<14时两种情况,结合平行线分线段成比例定理和平移的性质进行计算.
解答:精英家教网解:(1)过点B作BQ⊥OA于点Q,(如图1)
∵点A坐标是(-10,0)
∴点A1坐标为(-10+m,-3),OA=10
又∵点B坐标是(-8,6)
∴BQ=6,OQ=8
在Rt△OQB中,OB=
OQ2+BQ2
=
82+62
=10

∴OA=OB=10,tanα=
BQ
QO
=
6
8
=
3
4

由翻折的性质可知,PA=OA=10,PB=OB=10
∴四边形OAPB是菱形
∴PB∥AO
∴P点坐标为(-18,6)
∴P1点坐标为(-18+m,3);

(2)①当0<m≤4时,(如图2),过点B1作B1Q1⊥x轴于点Q1,则B1Q1=6精英家教网-3=3
设O1B1交x轴于点F
∵O1B1∥BO
∴∠α=∠β
在Rt△FQ1B1中,tanβ=
B1Q1
Q1F

3
4
=
3
Q1F

∴Q1F=4
∴B1F=
32+42
=5
∵AQ=OA-OQ=10-8=2
∴AF=AQ+QQ1+Q1F=2+m+4=6+m
∴周长l=2(B1F+AF)
=2(5+6+m)
=2m+22;
②当4<m<14时,(如图3)精英家教网
设P1A1交x轴于点S,P1B1交OB于点H
由平移性质,得OH=B1F=5
此时AS=m-4
∴OS=OA-AS
=10-(m-4)=14-m
∴周长L=2(OH+OS)
=2(5+14-m)
=-2m+38.
(说明:其他解法可参照给分)
点评:此题首先能够正确画出平移后的图形,综合运用勾股定理、平移的性质、平行线分线段成比例定理进行计算.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,在平面直角坐标中,四边形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,点P为x轴上的一个动点,但是点P不与点0、点A重合.连接CP,D点是线段AB上一点,连接PD.
(1)求点B的坐标;
(2)当∠CPD=∠OAB,且
BD
AB
=
5
8
,求这时点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•渝北区一模)如图,在平面直角坐标xoy中,以坐标原点O为圆心,3为半径画圆,从此圆内(包括边界)的所有整数点(横、纵坐标均为整数)中任意选取一个点,其横、纵坐标之和为0的概率是
5
29
5
29

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标中,等腰梯形ABCD的下底在x轴上,且B点坐标为(4,0),D点坐标为(0,3),则AC长为
5
5

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标xOy中,已知点A(-5,0),P是反比例函数y=
k
x
图象上一点,PA=OA,S△PAO=10,则反比例函数y=
k
x
的解析式为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标中,四边形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,动点P从点O出发,在梯形OABC的边上运动,路径为O→A→B→C,到达点C时停止.作直线CP.
(1)求梯形OABC的面积;
(2)当直线CP把梯形OABC的面积分成相等的两部分时,求直线CP的解析式;
(3)当△OCP是等腰三角形时,请写出点P的坐标(不要求过程,只需写出结果).

查看答案和解析>>

同步练习册答案