精英家教网 > 初中数学 > 题目详情

【题目】如图,中,,点O在斜边AB上,以O为圆心,OB长为半径作⊙O,与BC交于点D,连结AD,已知

1)求证:AD是⊙O的切线;

2)若BC=8,求⊙O的半径.

【答案】(1)见解析;(2)

【解析】

1)如图(见解析),连接OD,先根据等腰三角形的性质可得,从而可得,再根据直角三角形的性质可得,从而可得,然后根据等量代理可得,从而可得,最后根据圆的切线的判定即可得证;

2)先在中,利用正切三角函数值可求出AC的长,从而利用勾股定理可求出AB的长,再在中,利用正切三角函数值可求出CD的长,从而利用勾股定理可求出AD的长,然后设⊙O的半径为,在中,利用勾股定理即可得.

1)如图,连接OD

,即

是圆O的半径

是⊙O的切线;

2

中,,即

解得

由勾股定理得:

中,,即

解得

由勾股定理得:

设⊙O的半径为,则

由(1)可知,

是直角三角形

中,由勾股定理得:

解得

即⊙O的半径为

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】新冠疫情发生以来,为保证防控期间的口罩供应,某公司加紧转产,开设多条生产线争分夺秒赶制口罩,从最初转产时的陌生,到正式投产后达成日均生产100万个口罩的产能.不仅效率高,而且口罩送检合格率也不断提升,真正体现了大国速度.以下是质监局对一批口罩进行质量抽检的相关数据,统计如下:

抽检数量n/

20

50

100

200

500

1000

2000

5000

10000

合格数量m/

19

46

93

185

459

922

1840

4595

9213

口罩合格率

0.950

0.920

0.930

0.925

0.918

0.922

0.920

0.919

0.921

下面四个推断合理的是(

A.当抽检口罩的数量是10000个时,口罩合格的数量是9213个,所以这批口罩中口罩合格的概率是0.921

B.由于抽检口罩的数量分别是502000个时,口罩合格率均是0.920,所以可以估计这批口罩中口罩合格的概率是0.920

C.随着抽检数量的增加,口罩合格的频率总在0.920附近摆动,显示出一定的稳定性,所以可以估计这批口罩中口罩合格的概率是0.920

D.当抽检口罩的数量达到20000个时,口罩合格的概率一定是0.921

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】定义:有一组邻边均和一条对角线相等的四边形叫做邻和四边形.

1)如图1,四边形ABCD中,∠ABC70°,∠BAC40°,∠ACD=∠ADC80°,求证:四边形ABCD是邻和四边形.

2)如图2,是由50个小正三角形组成的网格,每个小正三角形的顶点称为格点,已知ABC三点的位置如图,请在网格图中标出所有的格点D,使得以ABCD为顶点的四边形为邻和四边形.

3)如图3,△ABC中,∠ABC90°,AB4BC4,若存在一点D,使四边形ABCD是邻和四边形,求邻和四边形ABCD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:正方形ABCD中,MAN=45°,∠MAN绕点A顺时针旋转,它的两边分别交CBDC(或它们的延长线)于点MN

(1)MAN绕点A旋转到BM=DN时(如图1),请你直接写出BMDNMN的数量关系:__________

(2)当MAN绕点A旋转到BMDN时(如图2),(1)中的结论是否仍然成立?若成立,请给予证明;若不成立,请你写出正确结论再给予证明.

(3)当MAN绕点A旋转到如图3的位置时,线段BMDNMN之间又有怎样的数量关系?请写出直接写出结论

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图(1),在平面直角坐标系中,点,点,点从点出发,沿1个单位每秒的速度匀速运动,同时点从点出发,沿轴正方向以2个单位每秒的速度匀速运动.,交于点,交轴于点.当点到达点时,两点同时停止运动,设运动的时间为秒.在整个运动过程中,设的重叠部分的面积为

1)求当为何值时,点与点在同一直线上;

2)求关于的函数关系式;

3)在图(3)中画出关于的函数图象,直接写出的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,∠CAB120°ABAC3,点E是三角形ABC 内一点,且满足则点E 在运动过程中所形成的图形的长为

A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,边长为6的正方形ABCD,动点PQ各从点AD同时出发,分别沿边ADDC方向运动,且速度均为每秒1个单位长度.

1AQBP关系为________________

2)如图2,当点P运动到线段AD的中点处时,AQBP交于点E,试探究∠CEQ和∠BCE满足怎样的数量关系;

3)如图3,将正方形变为菱形且∠BAD=60°,其余条件不变,设运动t秒后,点P仍在线段AD上,AQBDF,且△BPQ的面积为S,试求S的最小值,及当S取最小值时∠DPF的正切值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线yax2bx4y轴于点A,交过点A且平行于x轴的直线于另一点B,交x轴于CD两点(点C在点D右边),对称轴为直线x,连接ACADBC.若点B关于直线AC的对称点恰好落在线段OC上,下列结论中错误的是(

A.B坐标为(54)B.ABADC.aD.OCOD16

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小腾的爸爸计划将一笔资金用于不超过10天的短期投资,针对这笔资金,银行专属客户经理提供了三种投资方案,这三种方案的回报如下:

方案一:每一天回报30元;

方案二:第一天回报8元,以后每一天比前一天多回报8元;

方案三:第一天回报0.5元,以后每一天的回报是前一天的2倍.

下面是小腾帮助爸爸选择方案的探究过程,请补充完整:

1)确定不同天数所得回报金额(不足一天按一天计算),如下表:

天数

1

2

3

4

5

6

7

8

9

10

方案一

30

30

30

30

30

30

30

30

30

30

方案二

8

16

24

32

40

48

56

64

72

80

方案三

0.5

1

2

4

8

16

32

64

128

其中________

2)计算累计回报金额,设投资天数为(单位:天),所得累计回报金额是(单位:元),于是得到三种方案的累计回报金额与投资天数的几组对应值:

1

2

3

4

5

6

7

8

9

10

30

60

90

120

150

180

210

240

270

300

8

24

48

80

120

168

224

288

360

440

0.5

1.5

3.5

7.5

15.5

31.5

63.5

127.5

255.5

其中________

3)在同一平面直角坐标系中,描出补全后的表中各组数值所对应的点,并画出的图象;

注:为了便于分析,用虚线连接离散的点.

4)结合图象,小腾给出了依据不同的天数而选择对应方案的建议:

_________________________________________________________________________

查看答案和解析>>

同步练习册答案