精英家教网 > 初中数学 > 题目详情
6.如图,直线l经过第二、三、四象限,l的解析式是y=(m-2)x+n,则m的取值范围在数轴上表示为(  )
A.B.C.D.

分析 根据一次函数图象与系数的关系得到m-2<0且n<0,解得m<2,然后根据数轴表示不等式的方法进行判断.

解答 解:∵直线y=(m-2)x+n经过第二、三、四象限,
∴m-2<0且n<0,
∴m<2且n<0.
故选:C.

点评 本题考查了一次函数图象与系数的关系:一次函数y=kx+b(k、b为常数,k≠0)是一条直线,当k>0,图象经过第一、三象限,y随x的增大而增大;当k<0,图象经过第二、四象限,y随x的增大而减小;图象与y轴的交点坐标为(0,b).也考查了在数轴上表示不等式的解集.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

16.如图,在平面直角坐标系中,抛物线y=ax2-bx-3a交x轴于B、C两点,交y轴正半轴于点A,直线y=-x+3经过A、C两点.点P是射线CA上一动点.
(1)求抛物线的解析式;
(2)当点P在线段CA上时,P点的横坐标为t,过点P向x轴做垂线交第一象限抛物线于点Q,交x轴于点H,设线段PQ的长为d,求d与t之间的函数关系式;
(3)当点P在线段CA延长线上时,连接BP,取BP中点M,连接MA并延长交抛物线于点R,当AM=AR时,求R点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

17.若函数y=(k+1)x2+x+k2+3k-2的图象与y轴交点的纵坐标为-4,则k的值是(  )
A.-1B.-2C.-1或2D.-1或-2

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

14.已知如图,点C是线段AB的黄金分割点(AC>BC),则下列结论中正确的是(  )
A.AB2=AC2+BC2B.BC2=AC•BAC.AC2=AB•BCD.AC=2BC

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.在数轴上表示下列各数,并在横线上把它们按照从小到大的顺序排列(请填写原数).
2,-|-4|,-(+2.5),$\frac{7}{2}$,-14

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.已知有正整数k,使得$\frac{8}{15}$<$\frac{n}{n+k}$<$\frac{7}{13}$成立,求正整数n的最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

18.方程2x2-xy-3x+3y+2006=0的正整数解(x,y)为(4,2026);(8,442);(16,19);(34,136);(68,170);(158,332);(406,820);(2018,4040).

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

15.如图,二次函数y=-x2+2x+m+1的图象交x轴于点A(a,0)和B(b,0),交y轴于点C,图象的顶点为D.下列四个命题:
①当x>0时,y>0;
②若a=-1,则b=4;
③点C关于图象对称轴的对称点为E,点M为x轴上的一个动点,当m=2时,△MCE周长的最小值为2$\sqrt{10}$;
④图象上有两点P(x1,y1)和Q(x2,y2),若x1<1<x2,且x1+x2>2,则y1>y2
其中真命题的个数有(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.在数轴上表示有理数a、b、c的点的位置如图所示,求式子|a|-|a+b|+|c-a|+|b-c|化简后的结果.

查看答案和解析>>

同步练习册答案