精英家教网 > 初中数学 > 题目详情

【题目】如图,O是正五边形ABCDE的外接圆,F的中点,连接CF,EF.

(1)请直接写出∠CFE=   °;

(2)求证:EF=CF;

(3)若☉O的半径为5,的长.

【答案】(1)72°;(2)详见解析;(3).

【解析】

(1)根据圆内接四边形的性质和正五边形的内角解答即可;

(2)利用正五边形的性质和弧长关系证明即可;

(3)利用弧长公式解答即可.

: (1)∵正五边形ABCDE,

∴∠EDC=108°,

∴∠CFE=180°108°=72°,

故答案为:72°.

(2)五边形ABCDE是正五边形,AE=BC,,

F的中点,,

,,EF=CF.

(3)O是正五边形ABCDE的外接圆,

,

R=5,×R=2π,

=π,=.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,AB是O的直径,BD是O的弦,延长BD到点C,使DC=BD,连结AC,过点D作DEAC,垂足为E

1求证:AB=AC;

2求证:DE为O的切线;

3O半径为5,BAC=60°,求DE的长

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,甲、乙两只捕捞船同时在上午港出海捕鱼.甲船以的速度沿西偏北方向前进,乙船以的速度沿东北方向前进.甲船在航行到达处,此时甲船发现部分渔具丢在乙船上,于是甲船快速(匀速)沿北偏东的方向追赶,结果两船在处相遇.(其他因素不作考虑)

问乙船在什么时候被甲船追上;

求甲船追赶乙船的速度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某同学报名参加校运动会,有以下5个项目可供选择:

径赛项目:100m,200m,400m(分别用A1A2A3表示);

田赛项目:跳远,跳高(分别用B1B2表示).

(1)该同学从5个项目中任选一个,恰好是田赛项目的概率为________;

(2)该同学从5个项目中任选两个,利用树状图或列表列举出所有可能出现的结果,并求恰好是一个田赛项目和一个径赛项目的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知⊙O的直径CD=10cm,AB是⊙O的弦,ABCD,垂足为M,且AB=8cm,则AC的长为________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在直角边分别为34的直角三角形中,每多作一条斜边上的高就增加一个三角形的内切圆,以此类推,依此类推,图10中有10个直角三角形的内切圆,它们的面积分别记为S1,S2,S3,…,S10,则S1+S2+S3+…+S10=(

A. B. C. D. π

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB为⊙O的直径,C为⊙O上一点,经过点C的切线交AB的延长线于点E,ADECEC的延长线于点D,AD交⊙OF,FMABH,分别交⊙O、ACM、N,连接MB,BC.

(1)求证:AC平分∠DAE;

(2)若cosM=,BE=1,①求⊙O的半径;②求FN的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,把一块含30°角的三角板的直角顶点放在反比例函数y=﹣x<0)的图象上的点C处,另两个顶点分别落在原点Ox轴的负半轴上的点A处,且∠CAO=30°,则AC边与该函数图象的另一交点D的坐标坐标为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线AB和抛物线的交点是A(0,-3)B(59),已知抛物线的顶点D的横坐标是2.

(1)求抛物线的解析式及顶点坐标;

(2)轴上是否存在一点C,与AB组成等腰三角形?若存在,求出点C的坐标,若不存在,请说明理由;

(3)在直线AB的下方抛物线上找一点P,连接PAPB使得△PAB的面积最大,并求出这个最大值.

查看答案和解析>>

同步练习册答案