精英家教网 > 初中数学 > 题目详情

【题目】已知:A2a23ab2a1B=-a2ab1.

(1) |a+1| b- 22 0 ,求4A(3A2B)的值;

(2)(1)中代数式的值与a的取值无关,求b的值.

【答案】(1)5ab-2a+1,-7;(2)b=.

【解析】

1)把AB代入原式计算得到最简结果,根据非负性求出ab的值,再代入计算即可求出值;

2)把(1)结果变形,根据结果与a的值无关求出b的值即可.

1)∵A2a23ab2a1Ba2ab1

∴原式=4A3A2BA2B5ab2a1

|a+1| b- 22 0∴a1b2

a1b2时,原式=7

2)原式=5ab2a1=(5b2a1

由结果与a的取值无关,得到b

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知:如图,线段上,联结,过点的垂线,相交于线段的长为

(1)时,求线段的长;

(2)设△的面积为,求关于的函数解析式,并写出函数定义域;

(3)当△∽△时,求线段的长

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】探究题.

用棋子摆成的T字形图如图所示:

(1)填写下表:

图形序号

每个图案中棋子个数

5

8

(2)写出第nT字形图案中棋子的个数_________________(用含n的代数式表示)

(3)20T字形图案共有棋子____________个?

(4)计算前20T字形图案中棋子的总个数.

(提示:请你先思考下列问题:第1个图案与第20个图案中共有多少个棋子?第2个图案与第19个图案中共有多少个棋子?第3个图案与第18个图案呢?)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在RtABC中,∠C=90°,以AC为直径作⊙O,交ABD,过点OOEAB,交BCE.

(1)求证:ED为⊙O的切线;

(2)如果⊙O的半径为,ED=2,延长EO交⊙OF,连接DF、AF,求ADF的面积.

【答案】(1)证明见解析;(2)

【解析】试题分析:(1)首先连接OD,由OEAB,根据平行线与等腰三角形的性质,易证得 即可得,则可证得的切线;
(2)连接CD,根据直径所对的圆周角是直角,即可得 利用勾股定理即可求得的长,又由OEAB,证得根据相似三角形的对应边成比例,即可求得的长,然后利用三角函数的知识,求得的长,然后利用SADF=S梯形ABEF-S梯形DBEF求得答案.

试题解析:(1)证明:连接OD

OEAB

∴∠COE=CADEOD=ODA

OA=OD,

∴∠OAD=ODA

∴∠COE=DOE

在△COE和△DOE中,

∴△COE≌△DOE(SAS),

EDOD

ED的切线;

(2)连接CD,交OEM

RtODE中,

OD=32,DE=2,

OEAB

∴△COE∽△CAB

AB=5,

AC是直径,

EFAB

SADF=S梯形ABEFS梯形DBEF

∴△ADF的面积为

型】解答
束】
25

【题目】【题目】已知,抛物线y=ax2+ax+b(a≠0)与直线y=2x+m有一个公共点M(1,0),且a<b.

(1)求ba的关系式和抛物线的顶点D坐标(用a的代数式表示);

(2)直线与抛物线的另外一个交点记为N,求DMN的面积与a的关系式;

(3)a=﹣1时,直线y=﹣2x与抛物线在第二象限交于点G,点G、H关于原点对称,现将线段GH沿y轴向上平移t个单位(t>0),若线段GH与抛物线有两个不同的公共点,试求t的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,点E是边AC上一点,线段BE垂直于∠BAC的平分线于点D,点M为边BC的中点,连接DM

(1)求证: DMCE

(2)AD6BD8DM2,求AC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某厂为了检验甲、乙两车间生产的同一种零件的直径的合格情况,随机各抽取了10个样品进行检测,已知零件的直径均为整数,整理数据如下:(单位:

170174

175179

180184

185189

甲车间

1

3

4

2

乙车间

0

6

2

2

1)分别计算甲、乙两车间生产的零件直径的平均数;

2)直接说出甲、乙两车间生产的零件直径的中位数都在哪个小组内,众数是否在其相应的小组内?

3)若该零件的直径在的范围内为合格,甲、乙两车间哪一个车间生产的零件直径合格率高?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在正方形中,点是边的中点,点是对角线上的动点,连接,过点交正方形的边于点

1)当点在边上时,①判断的数量关系;

②当时,判断点的位置;

2)若正方形的边长为2,请直接写出点边上时,的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】“分组合作学习”已成为推动课堂教学改革,打造自主高效课堂的重要措施.某中学从全校学生中随机抽取部分学生对“分组合作学习”实施后的学习兴趣情况进行调查分析,统计图如下:

请结合图中信息解答下列问题:

(1)求出随机抽取调查的学生人数;

(2)补全分组后学生学习兴趣的条形统计图;

(3)分组后学生学习兴趣为“中”的所占的百分比和对应扇形的圆心角.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,ADABC的中线,EAD的中点,过点AAFBCBE延长线于点F,连接CF.

(1)如图1,求证:四边形ADCF是平行四边形;

(2)如图2.连接CE,在不添加任何助线的情况下,请直接写出图2中所有与BEC面积相等的三角形。

1 2

查看答案和解析>>

同步练习册答案