【题目】如图,点A是双曲线y= 在第一象限上的一动点,连接AO并延长交另一分支于点B,以AB为斜边作等腰Rt△ABC,点C在第二象限,随着点A的运动,点C的位置也不断的变化,但始终在一函数图象上运动,则这个函数的解析式为( )
A.y=
B.y=
C.y=﹣
D.y=﹣
【答案】D
【解析】解:如图,连结OC,作CD⊥x轴于D,AE⊥x轴于E,
∵A点、B点是正比例函数图象与双曲线y= 的交点,
∴点A与点B关于原点对称,
∴OA=OB,
∵△ABC为等腰直角三角形,
∴OC=OA,OC⊥OA,
∴∠DOC+∠AOE=90°,
∵∠DOC+∠DCO=90°,
∴∠DCO=∠AOE,
∵在△COD和△OAE中,
,
∴△COD≌△OAE(AAS),
设A点坐标为(a, ),则OD=AE= ,CD=OE=a,
∴C点坐标为(﹣ ,a),
∵﹣ a=﹣8,
∴点C在反比例函数y=﹣ 图象上.
故选(D)
先连结OC,作CD⊥x轴于D,AE⊥x轴于E,利用反比例函数的性质和等腰直角三角形的性质,根据“AAS”可判定△COD≌△OAE,设A点坐标为(a, ),得出OD=AE= ,CD=OE=a,最后根据反比例函数图象上点C的坐标特征确定函数解析式.
科目:初中数学 来源: 题型:
【题目】已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列5个结论:①abc>0; ②b>a+c;③9a+3b+c>0;④c<-3a;⑤a+b+c≥m(am+b)+c,其中正确的有( )个。
A. 2个 B. 3个 C. 4个 D. 5个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校想了解学生每周的课外阅读时间情况,随机调查了部分学生,对学生每周的课外阅读时间x(单位:小时)进行分组整理,并绘制了如图所示的不完整的频数直方图和扇形统计图:
根据图中提供的信息,解答下列问题:
(1)补全频数直方图;
(2)求扇形统计图中m的值和E组对应的圆心角度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,对于任意三点A,B,C,给出如下定义:如果矩形的任何一条边均与某条坐标轴平行,且A,B,C三点都在矩形的内部或边界上,则称该矩形为点A,B,C的覆盖矩形.点A,B,C的所有覆盖矩形中,面积最小的矩形称为点A,B,C的最优覆盖矩形.例如,下图中的矩形A1B1C1D1,A2B2C2D2,AB3C3D3都是点A,B,C的覆盖矩形,其中矩形AB3C3D3是点A,B,C的最优覆盖矩形.
(1)已知A(2,3),B(5,0),C(, 2).
①当时,点A,B,C的最优覆盖矩形的面积为 ;
②若点A,B,C的最优覆盖矩形的面积为40,则t的值为 ;
(2)已知点D(1,1),点E(, ),其中点E是函数的图像上一点,⊙P是点O,D,E的一个面积最小的最优覆盖矩形的外接圆,求出⊙P的半径r的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】类比等腰三角形的定义,我们定义:有一组邻边相等的凸四边形叫做等邻边四边形。.
(1)概念理解
如图1,在四边形ABCD中,添加一个条件使得四边形ABCD是等邻边四边形。请写出你添加的一个条件;
(2)问题探究
小明猜想:对角线互相平分的等邻边四边形是菱形.她的猜想正确吗?请说明理由.
如图2,小明面了一个Rt△ABC,其中∠ABC=90°,AB=2,BC=1,井将Rt△ABC沿∠ABC的平分线BB′方向平移得到△A′B′C′,连结AA′,BC′.小明要是平移后的四边形ABC′A′是“等邻边四边形”应平移多少距离(即线段BB′的长)?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在一次“献爱心手拉手”捐款活动中,某数学兴趣小组对学校所在社区部分捐款户数进行调查和分组统计,将数据整理成以下统计表和统计图(信息不完整),已知A,B两组捐款户数的比为1∶5.
捐款户数分组统计表
组别 | 捐款数(x)元 | 户数 |
A | 1≤x<100 | a |
B | 100≤x<200 | 10 |
C | 200≤x<300 | 20 |
D | 300≤x<400 | 14 |
E | x≥400 | 4 |
请结合以上信息解答下列问题:
(1)a=____________,本次调查的样本容量是____________;
(2)补全捐款户数统计表和统计图;
(3)若该社区有600户居民,根据以上信息估计全社区捐款不少于300元的户数是多少?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com