【题目】在一次“献爱心手拉手”捐款活动中,某数学兴趣小组对学校所在社区部分捐款户数进行调查和分组统计,将数据整理成以下统计表和统计图(信息不完整),已知A,B两组捐款户数的比为1∶5.
捐款户数分组统计表
组别 | 捐款数(x)元 | 户数 |
A | 1≤x<100 | a |
B | 100≤x<200 | 10 |
C | 200≤x<300 | 20 |
D | 300≤x<400 | 14 |
E | x≥400 | 4 |
请结合以上信息解答下列问题:
(1)a=____________,本次调查的样本容量是____________;
(2)补全捐款户数统计表和统计图;
(3)若该社区有600户居民,根据以上信息估计全社区捐款不少于300元的户数是多少?
【答案】(1)2 50 (2)见解析.(3)216户.
【解析】试题分析:(1)利用比值求a,把户数求和就是样本容量.(2)如下表.(3)先计算不少于300元户数的百分比,再计算总共户数.
试题解析:
(1)A,B两组捐款户数的比为1∶5,所以a=2.
本次调查的样本容量是2+10+20+14+4=50.
所以答案是:2 50
(2) 捐款户数分组统计表
组别 | 捐款数(x)元 | 户数 |
A | 1≤x<100 | 2 |
B | 100≤x<200 | 10 |
C | 200≤x<300 | 20 |
D | 300≤x<400 | 14 |
E | x≥400 | 4 |
.
(3)(14+4) 50=0.36=36%,
600×36%=600×0.36=216(户).
答:估计全社区捐款不少于300元的有216户.
科目:初中数学 来源: 题型:
【题目】综合题
(1)如图1,把△ABC沿DE折叠,使点A落在点A’处,试探索∠1+∠2与∠A的关系.(不必证明).
(2)如图2,BI平分∠ABC,CI平分∠ACB,把△ABC折叠,使点A与点I重合,若∠1+∠2=130°,求∠BIC的度数;
(3)如图3,在锐角△ABC中,BF⊥AC于点F,CG⊥AB于点G,BF、CG交于点H,把△ABC折叠使点A和点H重合,试探索∠BHC与∠1+∠2的关系,并证明你的结论.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知抛物线(其中)与x轴交于点A、B(点A在点B的左侧),与y轴交于点C,抛物线的对称轴l与x轴交于点D,且点D恰好在线段BC的垂直平分线上.
(1)求抛物线的关系式;
(2)过点的线段MN∥y轴,与BC交于点P,与抛物线交于点N.若点E是直线l上一点,且∠BED=∠MNB-∠ACO时,求点E的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点A是双曲线y= 在第一象限上的一动点,连接AO并延长交另一分支于点B,以AB为斜边作等腰Rt△ABC,点C在第二象限,随着点A的运动,点C的位置也不断的变化,但始终在一函数图象上运动,则这个函数的解析式为( )
A.y=
B.y=
C.y=﹣
D.y=﹣
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,在平行四边形ABCD中,E、F分别为边AB、CD的中点,BD是对角线,AG∥DB交CB的延长线于G.
(1)求证:△ADE≌△CBF;
(2)若四边形 BEDF是菱形,则四边形AGBD是什么特殊四边形?并证明你的结论.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如果把一个自然数各数位上的数字从最高位到个位依次排出的一串数字,与从个位到最高位依次排出的一串数字完全相同,那么我们把这样的自然数称为“和谐数”.例如自然数12321,从最高位到个位依次排出的一串数字是:1,2,3,2,1,从个位到最高位依次排出的一串数字仍是:1,2,3,2,1,因此12321是一个“和谐数”,再加22,545,3883,345543,…,都是“和谐数”.
(1)请你直接写出3个四位“和谐数”;请你猜想任意一个四位“和谐数”能否被11整除?并说明理由;
(2)已知一个能被11整除的三位“和谐数”,设其个位上的数字x(1≤x≤4,x为自然数),十位上的数字为y,求y与x的函数关系式.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com