精英家教网 > 初中数学 > 题目详情

【题目】某公司投资建了一商场,共有商铺30间,据预测,当每间租金定为10万元,可全部租出,每间的年租金每增加5000元,少租出商铺1间,该公司要为租出的商铺每间每年交各种费用1万元,未租出的商铺每间每年交各种费用5000元.
(1)当每间商铺的年租金为l3万元时,能租出多少间?
(2)若从减少空铺的角度来看,当每间商铺的年租金为多少万元时,该公司的年收益为275万元?

【答案】
(1)解:∵(130000﹣100000)÷5000=6,

∴能租出30﹣6=24(间)


(2)解:设每间商铺年租金增加x万元

所以(30﹣ )(10+x)﹣(30﹣ )×1﹣ ×0.5=275,

解得x1=5,x2=0.5,

∴每间商铺的年租金为10.5万元或15万元

∴若从减少空铺的角度来看,当每间商铺的年租金为10.5万元时,该公司的年收益为275万元.


【解析】(1)直接根据题意先求出增加的租金是4个5000,从而计算出租出多少间;(2)设每间商铺的年租金增加x万元,直接根据收益=租金﹣各种费用=275万元作为等量关系列方程求解即可.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】计算下列各题
(1)
(2)解不等式:3x﹣5≤2(x+2)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC中,将△ABC绕点A顺时针旋转40°后,得到△AB′C′,且C′在边BC上,则∠AC′C的度数为(

A.50°
B.60°
C.70°
D.80°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小丽和小华想利用摸球游戏决定谁去参加市里举办的书法比赛,游戏规则是:在一个不透明的袋子里装有除数字外完全相同的4个小球,上面分别标有数字2,3,4,5.一人先从袋中随机摸出一个小球,另一人再从袋中剩下的3个小球中随机摸出一个小球.若摸出的两个小球上的数字和为偶数,则小丽去参赛;否则小华去参赛.
(1)用列表法或画树状图法,求小丽参赛的概率.
(2)你认为这个游戏公平吗?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数y=ax2+bx+c的图象与x轴交于点(﹣2,0),(x1 , 0),且1<x1<2,与y轴的正半轴的交点在(0,2)的下方.下列结论:①4a﹣2b+c=0;②a<b<0;③2a+c>0;④2a﹣b+1<0.其中正确结论有 . (填序号)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,∠MON=20°,A、B分别为射线OM、ON上两定点,且OA=2,OB=4,点P、Q分别为射线OM、ON两动点,当P、Q运动时,线段AQ+PQ+PB的最小值是(

A.3
B.3
C.2
D.2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点C为线段AB上一点,△ACM、△CBN是等边三角形,直线AN、MC交于点E,直线BM、CN交于点F.

(1)求证:AN=MB;
(2)求证:△CEF为等边三角形;
(3)将△ACM绕点C按逆时针方向旋转90°,其它条件不变,在图②中补出符合要求的图形,并判断(1)题中的结论是否依然成立,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,直角三角形AOB的顶点A、B分别落在坐标轴上.O为原点,点A的坐标为(6,0),点B的坐标为(0,8).动点M从点O出发.沿OA向终点A以每秒1个单位的速度运动,同时动点N从点A出发,沿AB向终点B以每秒 个单位的速度运动.当一个动点到达终点时,另一个动点也随之停止运动,设动点M、N运动的时间为t秒(t>0).

(1)当t=3秒时.直接写出点N的坐标,并求出经过O、A、N三点的抛物线的解析式;
(2)在此运动的过程中,△MNA的面积是否存在最大值?若存在,请求出最大值;若不存在,请说明理由;
(3)当t为何值时,△MNA是一个等腰三角形?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形ABCD中,AE平分∠BAD交BC于E,∠CAE=15°,则下列结论:
①△ODC是等边三角形 ②BC=2AB ③∠AOE=135° ④S△AOE=S△COE

A.1
B.2
C.3
D.4

查看答案和解析>>

同步练习册答案