【题目】如图,⊙O是△ABC的外接圆,AB为直径,∠BAC的平分线交⊙O于点D,过点D的切线分别交AB,AC的延长线于E,F,连接BD.
(1)求证:AF⊥EF;
(2)若AC=6,CF=2,求⊙O的半径.
【答案】
(1)证明:
如图1,连接OD,
∵EF是⊙O的切线,且点D在⊙O上,
∴OD⊥EF,
∵OA=OD,
∴∠DAB=∠ADO,
∵AD平分∠BAC,
∴∠DAB=∠DAC,
∴∠ADO=∠DAC,
∴AF∥OD,
∴AF⊥EF;
(2)解:
如图2,过D作DG⊥AE于点G,连接CD,
∵∠BAD=∠DAF,AF⊥EF,DG⊥AE,
∴BD=CD,DG=DF,
在Rt△ADF和Rt△ADG中
∴Rt△ADF≌Rt△ADG(HL),
同理可得Rt△CDF≌Rt△BDG,
∴BG=CF=2,AG=AF=AC+CF=6+2=8,
∴AB=AG+BG=8+2=10,
∴⊙O的半径OA= AB=5.
【解析】(1)本题主要考查切线的性质及圆周角定理,连接OD,由切线的性质和已知条件可证得OD∥EF,再由平行线的判定则可证得所求的答案;
(2)通过过D作DG⊥AE于点G,连接CD,则可证得△ADF≌△ADG、△CDF≌△BDG,由三角形全等则可求得AB的长,再可求得圆的半径即可.
科目:初中数学 来源: 题型:
【题目】如图,在矩形纸片ABCD中,AB=2,AD=3,点E是AB的中点,点F是AD边上的一个动点,将△AEF沿EF所在直线翻折,得到△A′EF,则A′C的长的最小值是 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,将置于平面直角坐标系中的三角板AOB绕O点顺时针旋转90°得△A'OB'.已知∠AOB=30°,∠B=90°,AB=1,则B'点的坐标为 ( )
A. B.
C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)若关于、的二元一次方程组的解是,求关于、的二元一次方程组的解.
(2)如图,点、的坐标分别是、,点为轴上的一个动点,若点关于直线的对称点恰好落在轴上,写出点的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,P是等边三角形ABC内一点,将线段AP绕点A顺时针旋转60°得到线段AQ,若PA=6,PB=8,PC=10,则∠APB=_____°.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在菱形ABCD中,∠ABC=60°,AB=4,点E是AB边上的动点,过点B作直线CE的垂线,垂足为F,当点E从点A运动到点B时,点F的运动路径长为( )
A.
B.2
C. π
D. π
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,根据图中信息解答下列问题:
(1)关于x的不等式ax+b>0的解集是 .
(2)关于x的不等式mx+n<1的解集是 .
(3)当x为何值时,y1≤y2?
(4)当x为何值时,0<y2<y1?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中有一个△ABC,顶点A(﹣1,3),B(2,0),C(﹣3,﹣1).
(1)画出△ABC关于y轴的对称图形△A1B1C1(不写画法);
点A关于x轴对称的点坐标为
点B关于y轴对称的点坐标为
点C关于原点对称的点坐标为
(2)若网格上的每个小正方形的边长为1,则△ABC的面积是 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知在四边形ABCD中,AD=BC且AC⊥BD,点E,F,G,H,P,Q分别是AB,BC,CD,DA,AC,BD的中点.
求证:(1)四边形EFGH是矩形;
(2)四边形EQGP是菱形.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com