A. | k≥3 | B. | k<3 | C. | k≤3且k≠2 | D. | k<2 |
分析 根据二次函数图象与x轴有交点可得出关于x的一元二次方程有解,根据根的判别式结合二次项系数非零即可得出关于k的一元一次不等式组,解不等式组即可得出结论.
解答 解:∵二次函数y=(k-2)x2+2x+1的图象与x轴有交点,
∴一元二次方程(k-2)x2+2x+1=0有解,
∴$\left\{\begin{array}{l}{k-2≠0}\\{△={2}^{2}-4(k-2)=12-4k≥0}\end{array}\right.$,
解得:k≤3且k≠2.
故选:C.
点评 本题考查了抛物线与x轴的交点、根的判别式以及解一元一次不等式组,根据根的判别式△≥0结合二次项系数非零找出关于k的一元一次不等式组是解题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 13 | B. | 26 | C. | 47 | D. | 94 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com