15£®Ò»µãA´ÓÊýÖáÉϱíʾ+2µÄAµã¿ªÊ¼Òƶ¯£¬µÚÒ»´ÎÏÈÏò×óƽÒÆ1¸öµ¥Î»£¬ÔÙÏòÓÒƽÒÆ2¸öµ¥Î»£»µÚ¶þ´ÎÏÈÏò×óÒƶ¯3¸öµ¥Î»£¬ÔÙÏòÓÒÒƶ¯4¸öµ¥Î»£»µÚÈý´ÎÏÈÏò×óÒƶ¯5¸öµ¥Î»£¬ÔÙÏòÓÒÒƶ¯6¸öµ¥Î»£®Çó£º
£¨1£©Ð´³öµÚÒ»´ÎÒƶ¯ºóÕâ¸öµãÔÚÊýÖáÉϱíʾµÄÊýΪ+3£»
£¨2£©Ð´³öµÚ¶þ´ÎÒƶ¯½á¹ûÕâ¸öµãÔÚÊýÖáÉϱíʾµÄÊýΪ+4£»
£¨3£©Ð´³öµÚÈý´ÎÒƶ¯ºóÕâ¸öµãÔÚÊýÖáÉϱíʾµÄÊý+5£®
£¨4£©Ð´³öµÚn´ÎÒƶ¯½á¹ûÕâ¸öµãÔÚÊýÖáÉϱíʾµÄÊý2+n£®

·ÖÎö £¨1£©Ö±½ÓÀûÓõãƽÒƵÄÐÔÖʵóö¶ÔÓ¦µÄÊý×Ö£»
£¨2£©Ö±½ÓÀûÓõãƽÒƵÄÐÔÖʵóö¶ÔÓ¦µÄÊý×Ö£»
£¨3£©Ö±½ÓÀûÓõãƽÒƵÄÐÔÖʵóö¶ÔÓ¦µÄÊý×Ö£»
£¨4£©Ö±½ÓÀûÓõãƽÒƵĹæÂɵóö¶ÔÓ¦µÄÊý×Ö£®

½â´ð ½â£º£¨1£©¡ßA´ÓÊýÖáÉϱíʾ+2µÄAµã¿ªÊ¼Òƶ¯£¬
¡àµÚÒ»´ÎÏÈÏò×óƽÒÆ1¸öµ¥Î»£¬ÔÙÏòÓÒƽÒÆ2¸öµ¥Î»£¬ÔòµÚÒ»´ÎÒƶ¯ºóÕâ¸öµãÔÚÊýÖáÉϱíʾµÄÊýΪ£º2-1+2=3£»

£¨2£©¡ßµÚ¶þ´ÎÏÈÏò×óÒƶ¯3¸öµ¥Î»£¬ÔÙÏòÓÒÒƶ¯4¸öµ¥Î»£¬
¡àµÚ¶þ´ÎÒƶ¯½á¹ûÕâ¸öµãÔÚÊýÖáÉϱíʾµÄÊýΪ£º3-3+4=4£»

£¨3£©¡ßµÚÈý´ÎÏÈÏò×óÒƶ¯5¸öµ¥Î»£¬ÔÙÏòÓÒÒƶ¯6¸öµ¥Î»£¬
¡àµÚÈý´ÎÒƶ¯ºóÕâ¸öµãÔÚÊýÖáÉϱíʾµÄÊýΪ£º4-5+6=5£»

£¨4£©ÓÉÒÔÉϿɵ㺵Ún´ÎÒƶ¯½á¹ûÕâ¸öµãÔÚÊýÖáÉϱíʾµÄÊýΪ£ºn+2£®
¹Ê´ð°¸Îª£º£¨1£©+3£»£¨2£©+4£»£¨3£©+5£»£¨4£©2+n£®

µãÆÀ ´ËÌâÖ÷Òª¿¼²éÁËÊýÖáÒÔ¼°µãµÄƽÒÆ£¬ÕýÈ·µÃ³öƽÒƹæÂÉÊǽâÌâ¹Ø¼ü£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

5£®Èçͼ£¬ÔÚƽÃæÖ±½Ç×ø±êϵÖУ¬¡÷ABCµÄÈý¸ö¶¥µã×ø±êÊÇA£¨-2£¬0£©£¬B£¨-1£¬2£©£¬C£¨2£¬-1£©£¬¡÷ABC¹ØÓÚxÖá¶Ô³ÆµÄͼÐÎÊÇ¡÷A1B1C1£®
£¨1£©ÔÚͼÖÐ×÷³ö¡÷A1B1C1£¬²¢·Ö±ðд³öA1£¬B1£¬C1ÈýµãµÄ×ø±ê£»
£¨2£©ÔÚ¡÷ABCµÄÄÚ²¿ÓÐÒ»µãP£¨m£¬n£©£¬ÔòµãPµÄ¶Ô³ÆµãP1µÄ×ø±êΪ£¨m£¬-n£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

6£®½â·½³Ì£º£¨x-3£©2=2x£¨x-3£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

3£®ÏÂÁÐÓï¾äÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A£®-3ÊÇ27µÄ¸ºµÄÁ¢·½¸ùB£®£¨-1£©2µÄƽ·½¸ùÊÇ-1
C£®$\sqrt{64}$µÄÁ¢·½¸ùÊÇ2D£®£¨-1£©2µÄÁ¢·½¸ùÊÇ-1

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

10£®Èçͼ£¬lA£¬lB·Ö±ð±íʾA²½ÐÐÓëBÆï³µÔÚͬһ·ÉÏÐÐÊ»µÄ·³ÌSÓëʱ¼ätµÄ¹Øϵ£®
£¨1£©×ßÁËÒ»¶Î·ºó£¬×ÔÐгµÒò¹ÊÕÏ£¬½øÐÐÐÞÀí£¬ËùÓõÄʱ¼äÊÇ1Сʱ£®
£¨2£©B³ö·¢ºó3СʱÓëAÏàÓö
£¨3£©ÐÞÀíºóµÄ×ÔÐгµËÙ¶ÈÊǶàÉÙ£¿A²½ÐÐËÙ¶ÈÊǶàÉÙ£¿
£¨4£©ÈôBµÄ×ÔÐгµ²»·¢Éú¹ÊÕÏ£¬±£³Ö³ö·¢Ê±µÄËÙ¶ÈÇ°½ø£¬¼¸Ð¡Ê±ÓëAÏàÓö£¿ÏàÓöµãÀëBµÄ³ö·¢µã¼¸Ç§Ã×£¿
£¨5£©Çó³öAÐÐ×ߵķ³ÌSÓëʱ¼ätµÄº¯Êý¹Øϵʽ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

20£®Ð¡ºìÎÊÀÏʦµÄÄêÁäÓжà´óʱ£¬ÀÏʦ˵£º¡°ÎÒÏñÄãÕâô´óʱ£¬Äã²Å4Ë꣬µÈÄãÏñÎÒÕâô´óʱ£¬ÎÒ¾Í49ËêÁË£¬ÉèÀÏʦ½ñÄêxË꣬Сºì½ñÄêyËꡱ£¬¸ù¾ÝÌâÒâ¿ÉÁз½³ÌΪ£¨¡¡¡¡£©
A£®$\left\{\begin{array}{l}{x-y=y+4}\\{x-y=49+x}\end{array}\right.$B£®$\left\{\begin{array}{l}{x-y=y+4}\\{x-y=49-x}\end{array}\right.$
C£®$\left\{\begin{array}{l}{x-y=y-4}\\{x-y=49+x}\end{array}\right.$D£®$\left\{\begin{array}{l}{x-y=y-4}\\{x-y=49-x}\end{array}\right.$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

7£®£¨1£©¼ÆË㣺$\sqrt{27}$-£¨$\frac{1}{3}$£©-2+|$\sqrt{3}$-2|-2tan60¡ã+£¨2017-¦Ð£©0
£¨2£©»¯¼ò£º[x£¨x2y2-xy£©-y£¨x2-x3y£©]¡Âx2y£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

4£®Èçͼ£¬°ÑÒ»Õų¤·½ÐÎֽƬABCDÑØEFÕÛµþºó£¬Èô¡Ï2=40¡ã£¬Ôò¡Ï1µÄ¶ÈÊýΪ£¨¡¡¡¡£©
A£®110¡ãB£®115¡ãC£®125¡ãD£®130¡ã

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

5£®ÒÑÖª¶þ´Îº¯Êýy=£¨k-2£©x2+2x+1µÄͼÏóÓëxÖáÓн»µã£¬ÔòkµÄÈ¡Öµ·¶Î§ÊÇ£¨¡¡¡¡£©
A£®k¡Ý3B£®k£¼3C£®k¡Ü3ÇÒk¡Ù2D£®k£¼2

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸