精英家教网 > 初中数学 > 题目详情

【题目】在平面直角坐标系中四边形OABC是边长为6的正方形,平行于对角线AC的直线lO出发,沿x轴正方向以每秒一个单位长度的速度运动,运动到直线l与正方形没有交点为止,设直线l扫过正方形OABC的面积为S,直线l的运动时间为t(秒),下列能反映St之间的函数图象的是(  )

A.B.

C.D.

【答案】A

【解析】

根据三角形的面积即可求出St的函数关系式,根据函数关系式选择图象即可.

由题意得,如图,直线AC重合是一个临界位置,此时;直线运动到点B是另一个临界位置,此时,因此,分以下两部分:

①当时,,即

该函数图象是开口向上的抛物线的一部分

BD选项错误

②当时,

该函数图象是开口向下的抛物线的一部分

C选项错误

故选:A

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知在RtABC中,ABAC3,在△ABC内作第一个内接正方形DEFG;然后取GF的中点P,连接PDPE,在△PDE内作第二个内接正方形HIKJ;再取线段KJ的中点Q,在△QHI内作第三个内接正方形依次进行下去,则第2014个内接正方形的边长为____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,抛物线y=ax2-4ax+c(a0)y轴交于点A,将点A向右平移2个单位长度,得到点B.直线x轴,y轴分别交于点CD.

1)求抛物线的对称轴.

2)若点A与点D关于x轴对称.

①求点B的坐标.

②若抛物线与线段BC恰有一个公共点,结合函数图象,求a的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,是根据九年级某班50名同学一周的锻炼情况绘制的条形统计图,下面关于该班50名同学一周锻炼时间的说法错误的是(  )

A.平均数是6

B.中位数是6.5

C.众数是7

D.平均每周锻炼超过6小时的人数占该班人数的一半

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知抛物线yax2+bx+c(a0)上部分点的横坐标x与纵坐标y的对应值如下表:

x

3

2

1

0

1

2

3

y

4

4

0

(1)求该抛物线的表达式;

(2)已知点E(4 y)是该抛物线上的点,点E关于抛物线的对称轴对称的点为点F,求点E和点F的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】春节前夕,某批发部从厂家购进AB两种礼盒,已知购进2A礼盒和3B礼盒共花520元;购进3A礼盒和2B礼盒共花费480元.

1)求AB两种礼盒的单价分别是多少元?

2)该批发部经理购进这两种礼盒恰好用去4800元购进A种礼盒最多18个,B种礼盒的数量不超过A种礼盒数量的2倍,共有几种进货方案?

3)已知销售一个A种礼盒可获利10元,销售一个B种礼盒可获利18元,该店主决定每售出一个B种礼盒,为爱心公益基金捐款m元,每个A种礼盒的利润不变,在(2)的条件下,要使AB两种礼盒全部售出后所有方案获利均相同,m的值应是多少?此时这个批发部获利多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读理解:如图1,在△ABC中,当DEBC时可以得到三组成比例线段:① ;② ;③ .反之,当对应线段程比例时也可以推出DEBC

理解运用:三角形的内接四边形是指顶点在三角形各边上的四边形.

1)如图2,已知矩形DEFG是△ABC的一个内接矩形,将矩形DEFG沿CB方向向左平移得矩形PBQH,其中顶点DEFG的对应点分别为PBQH,在图2中画出平移后的图形;

2)在(1)所得的图形中,连接CH并延长交BP的延长线于点R,连接AR.求证:ARBC

3)如图3,某小区有一块三角形空地,已知△ABC空地的边AB=400米,BC=600米,∠ABC=45°;准备在△ABC内建一个内接矩形广场DEFG(点EF在边BC上,点DG分别在边ABAC上),三角形其余部分进行植被绿化,按要求欲使矩形DEFG的对角线EG最短,请在备用图中画出使对角线EG最短的矩形.并求出对角线EG的最短距离(不要求证明).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD的边长为2,P为CD的中点,连结AP,过点B作BE⊥AP于点E,延长CE交AD于点F,过点C作CH⊥BE于点G,交AB于点H,连接HF.下列结论正确的是(  )

A. CE= B. EF= C. cos∠CEP= D. HF2=EFCF

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在平面直角坐标系中,直线yx+4与抛物线y=﹣x2+bx+cbc是常数)交于AB两点,点Ax轴上,点By轴上.设抛物线与x轴的另一个交点为点C

1)求该抛物线的解析式;

2P是抛物线上一动点(不与点AB重合),

①如图2,若点P在直线AB上方,连接OPAB于点D,求的最大值;

②如图3,若点Px轴的上方,连接PC,以PC为边作正方形CPEF,随着点P的运动,正方形的大小、位置也随之改变.当顶点EF恰好落在y轴上,直接写出对应的点P的坐标.

查看答案和解析>>

同步练习册答案