精英家教网 > 初中数学 > 题目详情

【题目】春节前夕,某批发部从厂家购进AB两种礼盒,已知购进2A礼盒和3B礼盒共花520元;购进3A礼盒和2B礼盒共花费480元.

1)求AB两种礼盒的单价分别是多少元?

2)该批发部经理购进这两种礼盒恰好用去4800元购进A种礼盒最多18个,B种礼盒的数量不超过A种礼盒数量的2倍,共有几种进货方案?

3)已知销售一个A种礼盒可获利10元,销售一个B种礼盒可获利18元,该店主决定每售出一个B种礼盒,为爱心公益基金捐款m元,每个A种礼盒的利润不变,在(2)的条件下,要使AB两种礼盒全部售出后所有方案获利均相同,m的值应是多少?此时这个批发部获利多少元?

【答案】1A种礼盒单价为80元,B种礼盒单价为120元;(2)共有两种方案;(3m3,此时批发部获利600

【解析】

1)利用购进2A礼盒和3B礼盒共花520元;购进3A礼盒和2B礼盒共花费480元,分别得出等式求出即可;

2)利用两种礼盒恰好用去4800元,结合(1)中所求,得出等式,利用两种礼盒的数量关系求出即可;

3)首先列出店主可获利润的表达式,进而利用ab关系进行化简,再根据无关型问题求解即可答案.

1)设A种礼盒单价为x元,B种礼盒单价为y

由题意得:

解得:

答:A种礼盒单价为80元,B种礼盒单价为120元;

2)设购进A种礼盒a个,B种礼盒b

由题意得:

解得:

ab的值均为整数

a的值为:1518

故共有两种方案;

3)设店主获利为w

因此,

要使(2)中方案获利都相同,则

解得

此时,(元)

故此时这个批发部可以获利600元.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线y=x2+bx+c经过△ABC的三个顶点,其中点A(0,1,点B(﹣9,10,AC∥x轴,点P时直线AC下方抛物线上的动点.

(1求抛物线的解析式;(2过点P且与y轴平行的直线l与直线AB、AC分别交于点E、F,当四边形AECP的面积最大时,求点P的坐标;

(3当点P为抛物线的顶点时,在直线AC上是否存在点Q,使得以C、P、Q为顶点的三角形与△ABC相似,若存在,求出点Q的坐标,若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知的半径为1的直径,过点的切线的中点,点,四边形是平行四边形.

1)求的长:

2的切线吗?若是,给出证明;若不是,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了庆祝五四青年节,我市某中学举行了书法比赛,赛后随机抽查部分参赛同学成绩(满分为100分),并制作成图表如下

分数段

频数

频率

60≤x70

30

0.15

70≤x80

m

0.45

80≤x90

60

n

90≤x≤100

20

0.1

请根据以上图表提供的信息,解答下列问题:

1)这次随机抽查了   名学生;表中的数m   n   

2)请在图中补全频数分布直方图;

3)若绘制扇形统计图,分数段60≤x70所对应扇形的圆心角的度数是   

4)全校共有600名学生参加比赛,估计该校成绩不低于80分的学生有多少人?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中四边形OABC是边长为6的正方形,平行于对角线AC的直线lO出发,沿x轴正方向以每秒一个单位长度的速度运动,运动到直线l与正方形没有交点为止,设直线l扫过正方形OABC的面积为S,直线l的运动时间为t(秒),下列能反映St之间的函数图象的是(  )

A.B.

C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图, 在三边互不相等的ABC中, DEF分别是ABACBC边的中点.连接DE,过点CCMABDE的延长线于点M,连接CDEF交于点N,则图中全等三角形共有(

A.3B.4C.5D.6

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,某中学两座教学楼中间有个路灯,甲、乙两个人分别在楼上观察路灯顶端,视线所及如图①所示.根据实际情况画出平面图形如图②,CDDFABDFEFDF,甲从点C可以看到点G处,乙从点E恰巧可以看到点D处,点BDF的中点,路灯AB5.5米,DF=120米,BG=10.5米,求甲、乙两人的观测点到地面的距离的差.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在⊙O中,半径OA与弦BD垂直,点C在⊙O上,∠AOB80°

(1) 若点C在优弧BD上,求∠ACD的大小

(2) 若点C在劣弧BD上,直接写出∠ACD的大小

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,中,,点边中点,连接,点的中点,线段绕点顺时针旋转得到线段,连接

1)如图1,当时,请直接写出的值;

2)如图2,当时,(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请写出正确的结论,并说明理由;

3)如图3,当时,请直接写出的值(用含的三角函数表示)

查看答案和解析>>

同步练习册答案