【题目】如图,正方形ABCD的边长为2,P为CD的中点,连结AP,过点B作BE⊥AP于点E,延长CE交AD于点F,过点C作CH⊥BE于点G,交AB于点H,连接HF.下列结论正确的是( )
A. CE= B. EF= C. cos∠CEP= D. HF2=EFCF
【答案】D
【解析】
首先证明AH=HB,推出BG=EG,推出CB=CE,再证明△CBH≌△CEH,Rt△HFE≌Rt△HFA,利用全等三角形的性质即可一一判断.
连接.
四边形ABCD是正方形,
∴CD=AB=BC=AD=2,CD∥AB,
∵BE⊥AP,CG⊥BE,
∴CH∥PA,
∴四边形是平行四边形,
∴CP = AH,
∵CP=PD=1,
∴AH=PC=1,
∴AH=BH,
在Rt△ABE中,∵AH=HB,
∴EH=HB,∵HC⊥BE,
∴BG=EG,
∴CB=CE=2,故选项A错误,
∵CH=CH,CB=CE,HB=HE,
∴△CBH≌△CEH,
∴∠CBH=∠CEH=90°,
∵HF=HF,HE=HA,
∴Rt△HFE≌Rt△HFA,
∴AF=EF,设EF=AF=x,
在Rt△CDF中,有22+(2-x)2=(2+x)2,
∴x= ,
∴EF=∴,故B错误,
∵PA∥CH,
∴∠CEP=∠ECH=∠BCH,
∴cos∠CEP=cos∠BCH== ,故C错误.
∵HF= ,EF= ,FC=
∴HF2=EF·FC,故D正确,
故选:D.
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中四边形OABC是边长为6的正方形,平行于对角线AC的直线l从O出发,沿x轴正方向以每秒一个单位长度的速度运动,运动到直线l与正方形没有交点为止,设直线l扫过正方形OABC的面积为S,直线l的运动时间为t(秒),下列能反映S与t之间的函数图象的是( )
A.B.
C.D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,某中学两座教学楼中间有个路灯,甲、乙两个人分别在楼上观察路灯顶端,视线所及如图①所示.根据实际情况画出平面图形如图②,CD⊥DF,AB⊥DF,EF⊥DF,甲从点C可以看到点G处,乙从点E恰巧可以看到点D处,点B是DF的中点,路灯AB高5.5米,DF=120米,BG=10.5米,求甲、乙两人的观测点到地面的距离的差.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示是我国古代城市用以滞洪或分洪系统的局部截面原理图,图中为下水管道口直径,为可绕转轴自由转动的阀门,平时阀门被管道中排出的水冲开,可排出城市污水:当河水上涨时,阀门会因河水压迫而关闭,以防止河水倒灌入城中.若阀门的直径,为检修时阀门开启的位置,且.
(1)直接写出阀门被下水道的水冲开与被河水关闭过程中的取值范围;
(2)为了观测水位,当下水道的水冲开阀门到达位置时,在点处测得俯角,若此时点恰好与下水道的水平面齐平,求此时下水道内水的深度.(结果保留根号)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在⊙O中,半径OA与弦BD垂直,点C在⊙O上,∠AOB=80°
(1) 若点C在优弧BD上,求∠ACD的大小
(2) 若点C在劣弧BD上,直接写出∠ACD的大小
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一次函数y1=x+2与反比例函数y2=的图象交于A,B两点,点A的坐标为(1,a).
(1)求出k的值及点B的坐标;
(2)根据图象,写出y1>y2时x的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一次函数与抛物线交于A,B两点,且点A的横坐标是,点B的横坐标是3,则以下结论:①抛物线的图象的顶点一定是原点;②时,一次函数与抛物线的函数值都随x的增大而增大;③的长度可以等于5;④当时,.其中正确的结论是( )
A.①②③B.①②④C.①③④D.①②③④
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】2019年4月15日傍晚法国地标性建筑巴黎圣母院突遭大火吞噬,导致屋顶和主尖塔坍塌,哥特式的玫瑰花窗损毁.为了重建巴黎圣母院,设计小组设计了一个由三色玻璃拼成的花窗,如图所示,主体部分由矩形和半圆组成,设半圆为区域,四个全等的直角三角形为区域,矩形内的阴影部分为区域,其中,设
当,求区域的面积.
请用的代数式表示出区域的面积并求出其最大值.
为了美观,设置区域与区域的面积之比为.区域、区域、区域分别镶嵌红、蓝、黄色三种玻璃,已知这三种玻璃的单价之和为元(三种玻璃的单价均为整数),整个花窗镶嵌玻璃共花费了元,求这三种玻璃的单价.(取)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com