【题目】如图,菱形ABCD的边长为3,∠BAD=60°,点E、F在对角线AC上(点E在点F的左侧),且EF=1,则DE+BF最小值为_____
【答案】
【解析】
作DM∥AC,使得DM=EF=1,连接BM交AC于F,先证明四边形DEFM是平行四边形,由此得出DE=FM,推出DE+BF=FM+FB=BM,根据两点之间线段最短可知,此时DE+FB最短,由四边形ABCD是菱形,在Rt△BDM中,根据BM=计算即可.
如图,作DM∥AC,使得DM=EF=1,连接BM交AC于F,
∵DM=EF,DM∥EF,
∴四边形DEFM是平行四边形,
∴DE=FM,
∴DE+BF=FM+FB=BM,
根据两点之间线段最短可知,此时DE+FB最短,
∵四边形ABCD是菱形,AB=3,∠BAD=60°
∴AD=AB,
∴△ABD是等边三角形,
∴BD=AB=3,
在Rt△BDM中,BM==
∴DE+BF的最小值为.
故答案为.
科目:初中数学 来源: 题型:
【题目】如图,已知在Rt△ABC中,AB=AC=3,在△ABC内作第一个内接正方形DEFG;然后取GF的中点P,连接PD、PE,在△PDE内作第二个内接正方形HIKJ;再取线段KJ的中点Q,在△QHI内作第三个内接正方形…依次进行下去,则第2014个内接正方形的边长为____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,矩形中,,,动点从点出发以/秒向终点运动,动点同时从点出发以/秒按的方向在边,,上运动,设运动时间为(秒),那么的面积随着时间(秒)变化的函数图象大致为( )
A.B.C.D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】问题提出
(1)如图①,在△ABC中,AB=AC=10,BC=12,点O是△ABC的外接圆的圆心,则OB的长为
问题探究
(2)如图②,已知矩形ABCD,AB=4,AD=6,点E为AD的中点,以BC为直径作半圆O,点P为半圆O上一动点,求E、P之间的最大距离;
问题解决
(3)某地有一块如图③所示的果园,果园是由四边形ABCD和弦CB与其所对的劣弧场地组成的,果园主人现要从入口D到上的一点P修建一条笔直的小路DP.已知AD∥BC,∠ADB=45°,BD=120米,BC=160米,过弦BC的中点E作EF⊥BC交于点F,又测得EF=40米.修建小路平均每米需要40元(小路宽度不计),不考虑其他因素,请你根据以上信息,帮助果园主人计算修建这条小路最多要花费多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,抛物线y=ax2-4ax+c(a≠0)与y轴交于点A,将点A向右平移2个单位长度,得到点B.直线与x轴,y轴分别交于点C,D.
(1)求抛物线的对称轴.
(2)若点A与点D关于x轴对称.
①求点B的坐标.
②若抛物线与线段BC恰有一个公共点,结合函数图象,求a的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,是根据九年级某班50名同学一周的锻炼情况绘制的条形统计图,下面关于该班50名同学一周锻炼时间的说法错误的是( )
A.平均数是6
B.中位数是6.5
C.众数是7
D.平均每周锻炼超过6小时的人数占该班人数的一半
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形ABCD的边长为2,P为CD的中点,连结AP,过点B作BE⊥AP于点E,延长CE交AD于点F,过点C作CH⊥BE于点G,交AB于点H,连接HF.下列结论正确的是( )
A. CE= B. EF= C. cos∠CEP= D. HF2=EFCF
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com