精英家教网 > 初中数学 > 题目详情

【题目】如图,的点上,相交于点,连接

1)求圆心到弦的距离;

2)若

①求证:的切线;

②求的长.

【答案】1)圆心的距离为;(2)①见解析;②

【解析】

1)连接ODOC,过OOEDCE,得到OCD是等边三角形,求得ODOCCD,解直角三角形即可得到结论;

2)①由(1)得,ODC是等边三角形,求得∠OCD60°,证明,根据相似三角形的性质得到∠A=∠BCD30°,求得∠OCB90°,于是得到BC是⊙O的切线;

②根据相似三角形的性质得到CB2ABDB,过DDFACF,得到∠AFD=∠CFD90°,解直角三角形求出AD,再证明,即可解决问题.

解:(1)连接,过点于点

内接于

为等边三角形,

,即圆心的距离为

2)①由(1)得为等边三角形,

,

的切线;

②∵

,即

过点于点

,则

解得:

),

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】操作:将一把三角尺放在边长为1的正方形ABCD上,并使它的直角顶点P在对角线AC上滑动,直角的一边始终经过点B,另一边与射线DC相交于点Q,设AP两点间的距离为x

探究:

1)当点Q在边CD上时,线段PQ与线段PB之间有怎样的大小关系?试证明你观察到的结论;

2)当点Q在边CD上时,设四边形PBCQ的面积为y,求yx之间的函数关系式,并写出x的取值范围;(3)当点P在线段AC上滑动时,△PCQ是否能成为等腰三角形?如果可能,指出所有能使△PCQ成为等腰三角形的点Q的位置,并求出相应x的值;如果不可能,试说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在同一平面坐标系中,函数y=mx+m和y=﹣mx2+2x+2(m是常数,且m0)的图象可能是(  )

A. B. C. D.

【答案】D

【解析】A.由函数y=mx+m的图象可知m<0,即函数y=mx2+2x+2开口方向朝上,与图象不符,故A选项错误;

B.由函数y=mx+m的图象可知m<0,对称轴为x=<0,则对称轴应在y轴左侧,与图象不符,故B选项错误;

C.由函数y=mx+m的图象可知m>0,即函数y=mx2+2x+2开口方向朝下,与图象不符,故C选项错误;

D.由函数y=mx+m的图象可知m<0,即函数y=mx2+2x+2开口方向朝上,对称轴为x=<0,则对称轴应在y轴左侧,与图象相符,故D选项正确;

故选:D.

型】单选题
束】
10

【题目】如图,已知菱形ABCD的周长为16,面积为,EAB的中点,若P为对角线BD上一动点,则EP+AP的最小值为(  )

A. 2 B. 2 C. 4 D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知抛物线yax2+bx+c的对称轴为x=﹣1,且过点(﹣30),(0,﹣3).

1)求抛物线的表达式.

2)已知点(mk)和点(nk)在此抛物线上,其中mn,请判断关于t的方程t2+mt+n0是否有实数根,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=﹣x2+x+3x轴交于点AB(点A在点B的左边),交y轴于点C,点P为抛物线对称轴上一点.则APC的周长最小值是_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,菱形ABCD的边长为3,∠BAD60°,点EF在对角线AC上(点E在点F的左侧),且EF1,则DE+BF最小值为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图①,在△ABC和△ADE中,ABACADAE,∠BAC=∠DAE40°,连接BDCE.将△ADE绕点A旋转,BDCE也随之运动.

1)求证:BDCE

2)在△ADE绕点A旋转过程中,当AEBC时,求∠DAC的度数;

3)如图②,当点D恰好是△ABC的外心时,连接DC,判断四边形ADCE的形状,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为丰富学生的文体生活,某学校准备成立“声乐、演讲、舞蹈、足球、篮球”五个社团,要求每个学生都参加一个社团且每人只能参加一个社团.为了了解即将参加每个社团的大致人数,学校对部分学生进行了抽样调查,在整理调查数据的过程中,绘制出如图所示的两幅不完整的统计图,请你根据图中信息解答下列问题:

1)被抽查的学生一共有人__________

2)将条形统计图补充完整;

3)若全校有学生1500人,请你估计全校有意参加“声乐”杜团的学生人数;

4)在“舞蹈社团”活动中,甲、乙、丙、丁、戊五位同学表现优秀,现决定从这五位同学中任选两位参加“元旦迎新汇演”,请用列表或画树状图的方法求出恰好选中甲、乙两位同学的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示是我国古代城市用以滞洪或分洪系统的局部截面原理图,图中为下水管道口直径,为可绕转轴自由转动的阀门,平时阀门被管道中排出的水冲开,可排出城市污水:当河水上涨时,阀门会因河水压迫而关闭,以防止河水倒灌入城中.若阀门的直径为检修时阀门开启的位置,且

1)直接写出阀门被下水道的水冲开与被河水关闭过程中的取值范围;

2)为了观测水位,当下水道的水冲开阀门到达位置时,在点处测得俯角,若此时点恰好与下水道的水平面齐平,求此时下水道内水的深度.(结果保留根号)

查看答案和解析>>

同步练习册答案