精英家教网 > 初中数学 > 题目详情

【题目】如图①,在△ABC和△ADE中,ABACADAE,∠BAC=∠DAE40°,连接BDCE.将△ADE绕点A旋转,BDCE也随之运动.

1)求证:BDCE

2)在△ADE绕点A旋转过程中,当AEBC时,求∠DAC的度数;

3)如图②,当点D恰好是△ABC的外心时,连接DC,判断四边形ADCE的形状,并说明理由.

【答案】1)见详解;(2;(3)四边形ADCE是菱形.

【解析】

1)利用SAS证明由全等三角形对应角相等的性质可得结论;

2)由等腰三角形两底角相等及三角形内角和定理可知的度数,由两直线平行,同旁内角互补可知的度数,易求∠DAC的度数;

(3)利用利用SAS证明可得,由点D是△ABC的外心可得,由四条边都相等的四边形是菱形可判定四边形ADCE的形状.

解:(1

2

3

D是△ABC的外心,即点D为三角形三边垂直平分线的交点

所以四边形ADCE是菱形.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】将二次函数yax2的图象先向下平移2个单位,再向右平移3个单位,截x轴所得的线段长为4,则a=(

A.1B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】移动通信公司建设的钢架信号塔(如图1),它的一个侧面的示意图(如图2).CD是等腰三角形ABC底边上的高,分别过点A、点B作两腰的垂线段,垂足分别为B1A1,再过A1B1分别作两腰的垂线段所得的垂足为B2A2,用同样的作法依次得到垂足B3A3,….若AB3米,sinα,则水平钢条A2B2的长度为(  )

A. B. 2C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,的点上,相交于点,连接

1)求圆心到弦的距离;

2)若

①求证:的切线;

②求的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】张琪和爸爸到曲江池遗址公园运动,两人同时从家出发,沿相同路线前行,途中爸爸有事返回,张琪继续前行5分钟后也原路返回,两人恰好同时到家张琪和爸爸在整个运动过程中离家的路点y1(米),y2(米)与运动时间x(分)之间的函数关系如图所示

1)求爸爸返问时离家的路程y2(米)与运动时间x(分)之间的函数关系式;

2)张琪开始返回时与爸爸相距多少米?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,抛物线y=ax2-4ax+c(a0)y轴交于点A,将点A向右平移2个单位长度,得到点B.直线x轴,y轴分别交于点CD.

1)求抛物线的对称轴.

2)若点A与点D关于x轴对称.

①求点B的坐标.

②若抛物线与线段BC恰有一个公共点,结合函数图象,求a的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,一辆单车放在水平的地面上,车把头下方处与坐垫下方处在平行于地面的同一水平线上,之间的距离约为,现测得的夹角分别为,若点到地面的距离,坐垫中轴处与点的距离,求点到地面的距离(结果保留一位小数).(参考数据:

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知抛物线yax2+bx+c(a0)上部分点的横坐标x与纵坐标y的对应值如下表:

x

3

2

1

0

1

2

3

y

4

4

0

(1)求该抛物线的表达式;

(2)已知点E(4 y)是该抛物线上的点,点E关于抛物线的对称轴对称的点为点F,求点E和点F的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,已知边长为4的正方形钢板有一个角锈蚀,其中AF2BF1,为了合理利用这块钢板.将在五边形EABCD内截取一个矩形块MDNP,使点PAB上,且要求面积最大,求钢板的最大利用率.

查看答案和解析>>

同步练习册答案