【题目】移动通信公司建设的钢架信号塔(如图1),它的一个侧面的示意图(如图2).CD是等腰三角形ABC底边上的高,分别过点A、点B作两腰的垂线段,垂足分别为B1,A1,再过A1,B1分别作两腰的垂线段所得的垂足为B2,A2,用同样的作法依次得到垂足B3,A3,….若AB为3米,sinα=,则水平钢条A2B2的长度为( )
A. 米B. 2米C. 米D. 米
科目:初中数学 来源: 题型:
【题目】在中,,,以为边在的另一侧作,点为射线上任意一点,在射线上截取,连接.
(1)如图1,当点落在线段的延长线上时,直接写出的度数;
(2)如图2,当点落在线段(不含边界)上时,与于点,请问(1)中的结论是否仍成立?如果成立,请给出证明;如果不成立,请说明理由;
(3)在(2)的条件下,若,求的最大值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某超市用3400元购进A、B两种文具盒共120个,这两种文具盒的进价、标价如下表:
价格/类型 | A型 | B型 |
进价(元/只) | 15 | 35 |
标价(元/只) | 25 | 50 |
(1)这两种文具盒各购进多少只?
(2)若A型文具盒按标价的9折出售,B型文具盒按标价的8折出售,那么这批文具盒全部售出后,超市共获利多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在同一平面坐标系中,函数y=mx+m和y=﹣mx2+2x+2(m是常数,且m≠0)的图象可能是( )
A. B. C. D.
【答案】D
【解析】A.由函数y=mx+m的图象可知m<0,即函数y=mx2+2x+2开口方向朝上,与图象不符,故A选项错误;
B.由函数y=mx+m的图象可知m<0,对称轴为x=<0,则对称轴应在y轴左侧,与图象不符,故B选项错误;
C.由函数y=mx+m的图象可知m>0,即函数y=mx2+2x+2开口方向朝下,与图象不符,故C选项错误;
D.由函数y=mx+m的图象可知m<0,即函数y=mx2+2x+2开口方向朝上,对称轴为x=<0,则对称轴应在y轴左侧,与图象相符,故D选项正确;
故选:D.
【题型】单选题
【结束】
10
【题目】如图,已知菱形ABCD的周长为16,面积为,E为AB的中点,若P为对角线BD上一动点,则EP+AP的最小值为( )
A. 2 B. 2 C. 4 D. 4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知抛物线y=ax2+bx+c的对称轴为x=﹣1,且过点(﹣3,0),(0,﹣3).
(1)求抛物线的表达式.
(2)已知点(m,k)和点(n,k)在此抛物线上,其中m≠n,请判断关于t的方程t2+mt+n=0是否有实数根,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=﹣x2+x+3与x轴交于点A,B(点A在点B的左边),交y轴于点C,点P为抛物线对称轴上一点.则△APC的周长最小值是_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图①,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE=40°,连接BD、CE.将△ADE绕点A旋转,BD、CE也随之运动.
(1)求证:BD=CE;
(2)在△ADE绕点A旋转过程中,当AE∥BC时,求∠DAC的度数;
(3)如图②,当点D恰好是△ABC的外心时,连接DC,判断四边形ADCE的形状,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,抛物线y=ax2+bx+c与x轴交于A、B两点,A(﹣5,0),与y轴交于C(0,﹣5),并且对称轴x=﹣3.
(1)求抛物线的解析式;
(2)P在x轴上方的抛物线上,过P的直线y=x+m与直线AC交于点M,与y轴交于点N,求PM+MN的最大值;
(3)点D为抛物线对称轴上一点,
①当△ACD是以AC为直角边的直角三角形时,求D点坐标;
②若△ACD是锐角三角形,求点D的纵坐标的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com