精英家教网 > 初中数学 > 题目详情

【题目】移动通信公司建设的钢架信号塔(如图1),它的一个侧面的示意图(如图2).CD是等腰三角形ABC底边上的高,分别过点A、点B作两腰的垂线段,垂足分别为B1A1,再过A1B1分别作两腰的垂线段所得的垂足为B2A2,用同样的作法依次得到垂足B3A3,….若AB3米,sinα,则水平钢条A2B2的长度为(  )

A. B. 2C. D.

【答案】C

【解析】

RtACB1中,由sinα,可以假设CB14kACBC5k,在RtCA2B1中,sinα,可得CA2,根据A2B2AB,可得,由此即可解决问题.

RtACB1中,∵sinα

∴可以假设CB14kACBC5k

RtCA2B1中,sinα

CA2

A2B2AB

(米),

故选C

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】中,,以为边在的另一侧作,点为射线上任意一点,在射线上截取,连接

1)如图1,当点落在线段的延长线上时,直接写出的度数;

2)如图2,当点落在线段(不含边界)上时,于点,请问(1)中的结论是否仍成立?如果成立,请给出证明;如果不成立,请说明理由;

3)在(2)的条件下,若,求的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某超市用3400元购进AB两种文具盒共120个,这两种文具盒的进价、标价如下表:

价格/类型

A

B

进价(元/只)

15

35

标价(元/只)

25

50

1)这两种文具盒各购进多少只?

2)若A型文具盒按标价的9折出售,B型文具盒按标价的8折出售,那么这批文具盒全部售出后,超市共获利多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在同一平面坐标系中,函数y=mx+m和y=﹣mx2+2x+2(m是常数,且m0)的图象可能是(  )

A. B. C. D.

【答案】D

【解析】A.由函数y=mx+m的图象可知m<0,即函数y=mx2+2x+2开口方向朝上,与图象不符,故A选项错误;

B.由函数y=mx+m的图象可知m<0,对称轴为x=<0,则对称轴应在y轴左侧,与图象不符,故B选项错误;

C.由函数y=mx+m的图象可知m>0,即函数y=mx2+2x+2开口方向朝下,与图象不符,故C选项错误;

D.由函数y=mx+m的图象可知m<0,即函数y=mx2+2x+2开口方向朝上,对称轴为x=<0,则对称轴应在y轴左侧,与图象相符,故D选项正确;

故选:D.

型】单选题
束】
10

【题目】如图,已知菱形ABCD的周长为16,面积为,EAB的中点,若P为对角线BD上一动点,则EP+AP的最小值为(  )

A. 2 B. 2 C. 4 D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,是⊙的直径,是⊙的弦,点延长线的一点,平分交⊙于点,过点,垂足为点

1)求证:是⊙的切线;

2)若,求⊙的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知抛物线yax2+bx+c的对称轴为x=﹣1,且过点(﹣30),(0,﹣3).

1)求抛物线的表达式.

2)已知点(mk)和点(nk)在此抛物线上,其中mn,请判断关于t的方程t2+mt+n0是否有实数根,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=﹣x2+x+3x轴交于点AB(点A在点B的左边),交y轴于点C,点P为抛物线对称轴上一点.则APC的周长最小值是_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图①,在△ABC和△ADE中,ABACADAE,∠BAC=∠DAE40°,连接BDCE.将△ADE绕点A旋转,BDCE也随之运动.

1)求证:BDCE

2)在△ADE绕点A旋转过程中,当AEBC时,求∠DAC的度数;

3)如图②,当点D恰好是△ABC的外心时,连接DC,判断四边形ADCE的形状,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,抛物线yax2+bx+cx轴交于AB两点,A(﹣50),与y轴交于C0,﹣5),并且对称轴x=﹣3

1)求抛物线的解析式;

2Px轴上方的抛物线上,过P的直线yx+m与直线AC交于点M,与y轴交于点N,求PM+MN的最大值;

3)点D为抛物线对称轴上一点,

①当△ACD是以AC为直角边的直角三角形时,求D点坐标;

②若△ACD是锐角三角形,求点D的纵坐标的取值范围.

查看答案和解析>>

同步练习册答案