【题目】将二次函数y=ax2的图象先向下平移2个单位,再向右平移3个单位,截x轴所得的线段长为4,则a=( )
A.1B.C.D.
科目:初中数学 来源: 题型:
【题目】如图,已知抛物线经过,两点,与x轴的另一个交点为C,顶点为D,连结CD.
(1)求该抛物线的表达式;
(2)点P为该抛物线上一动点(与点B、C不重合),设点P的横坐标为t.
①当点P在直线BC的下方运动时,求的面积的最大值;
②该抛物线上是否存在点P,使得若存在,求出所有点P的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在中,,,以为边在的另一侧作,点为射线上任意一点,在射线上截取,连接.
(1)如图1,当点落在线段的延长线上时,直接写出的度数;
(2)如图2,当点落在线段(不含边界)上时,与于点,请问(1)中的结论是否仍成立?如果成立,请给出证明;如果不成立,请说明理由;
(3)在(2)的条件下,若,求的最大值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】操作:将一把三角尺放在边长为1的正方形ABCD上,并使它的直角顶点P在对角线AC上滑动,直角的一边始终经过点B,另一边与射线DC相交于点Q,设A、P两点间的距离为x.
探究:
(1)当点Q在边CD上时,线段PQ与线段PB之间有怎样的大小关系?试证明你观察到的结论;
(2)当点Q在边CD上时,设四边形PBCQ的面积为y,求y与x之间的函数关系式,并写出x的取值范围;(3)当点P在线段AC上滑动时,△PCQ是否能成为等腰三角形?如果可能,指出所有能使△PCQ成为等腰三角形的点Q的位置,并求出相应x的值;如果不可能,试说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】同时抛掷两枚质地均匀的正四面体骰子,骰子各个面的点数分别是1至4的整数,把这两枚骰子向下的面的点数记为(a,b),其中第一枚骰子的点数记为a,第二枚骰子的点数记为b.
(1)用列举法或树状图法求(a,b)的结果有多少种?
(2)求方程x2+bx+a=0有实数解的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某超市用3400元购进A、B两种文具盒共120个,这两种文具盒的进价、标价如下表:
价格/类型 | A型 | B型 |
进价(元/只) | 15 | 35 |
标价(元/只) | 25 | 50 |
(1)这两种文具盒各购进多少只?
(2)若A型文具盒按标价的9折出售,B型文具盒按标价的8折出售,那么这批文具盒全部售出后,超市共获利多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在同一平面坐标系中,函数y=mx+m和y=﹣mx2+2x+2(m是常数,且m≠0)的图象可能是( )
A. B. C. D.
【答案】D
【解析】A.由函数y=mx+m的图象可知m<0,即函数y=mx2+2x+2开口方向朝上,与图象不符,故A选项错误;
B.由函数y=mx+m的图象可知m<0,对称轴为x=<0,则对称轴应在y轴左侧,与图象不符,故B选项错误;
C.由函数y=mx+m的图象可知m>0,即函数y=mx2+2x+2开口方向朝下,与图象不符,故C选项错误;
D.由函数y=mx+m的图象可知m<0,即函数y=mx2+2x+2开口方向朝上,对称轴为x=<0,则对称轴应在y轴左侧,与图象相符,故D选项正确;
故选:D.
【题型】单选题
【结束】
10
【题目】如图,已知菱形ABCD的周长为16,面积为,E为AB的中点,若P为对角线BD上一动点,则EP+AP的最小值为( )
A. 2 B. 2 C. 4 D. 4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图①,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE=40°,连接BD、CE.将△ADE绕点A旋转,BD、CE也随之运动.
(1)求证:BD=CE;
(2)在△ADE绕点A旋转过程中,当AE∥BC时,求∠DAC的度数;
(3)如图②,当点D恰好是△ABC的外心时,连接DC,判断四边形ADCE的形状,并说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com