【题目】如图,在矩形中,延长至点,且,为中点,连结,.
(1)求证:的面积是的面积的倍.
(2)若,,求的长.
【答案】(1)见解析;(2)
【解析】
(1)过点F作GH⊥CD,分别交AB,CD于点G,H.根据四边形ABCD是矩形,为中点,可证得△BGF≌△EHF,得GF=HF,△ABF的面积=,△DEF的面积=,又因为AB=3DE,即可求证△ABF的面积是△DEF的面积的3倍.
(2)设DE=a,则CD=3a,BE=6a,EC=4a,由勾股定理即可求出a,进而求出BE.
(1)证明:过点F作GH⊥CD,分别交AB,CD于点G,H.
∵AB∥CD,∴∠GBF=∠E,∠BGF=∠EHF.
∵F为BE中点,∴BF=EF.
∴△BGF≌△EHF(AAS). ∴GF=HF.
∵FH⊥CD,AB∥CD,∴GF⊥AB.
∴△ABF的面积=,△DEF的面积=,
∵AB=3DE,GF=HF,
∴△ABF的面积是△DEF的面积的3倍.
(2)设DE=a,则CD=AB=3a,BE=2AB=6a,
∴EC=ED+CD=a+3a=4a.
由勾股定理,得,
即,解得,或(舍去).
∴.
故答案为:
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠ACB=90°,点D在AC上,DE⊥AB于点E,且CD=DE.点F在BC上,连接EF,AF,若∠CEF=45°,∠B=2∠CAF,BF=2,则AB的长为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,正方形的顶点的坐标为,点在轴正半轴上,点在第三象限的双曲线上,过点作轴交双曲线于点,连接,则的面积为__________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】将正偶数按下表排成5列:
第一列 | 第二列 | 第三列 | 第四列 | 第五列 | |
第一行 | 2 | 4 | 6 | 8 | |
第二行 | 16 | 14 | 12 | 10 | |
第三行 | 18 | 20 | 22 | 24 | |
第四行 | 32 | 30 | 28 | 26 | |
…… |
根据上面规律,2020应在( )
A.125行,3列B.125行,2列C.253行,2列D.253行,3列
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一个箱子内有颗相同的球,将颗球分别标示号码,,,今浩浩以每次从箱子内取一颗球且取后放回的方式抽取,并预计取球次,现已取了次,取出的号码依次为,,,若每次取球时,任一颗球被取到的机会皆相等,且取出的号码即为得分数,浩浩打算依计划继续从箱子取球次,则发生“这次得分的平均数在之间(含,)”的情形的概率为________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角系中,点A在x轴正半轴上,点B在y轴正半轴上,∠ABO=30°,AB=2,以AB为边在第一象限内作等边△ABC,反比例函数的图象恰好经过边BC的中点D,边AC与反比例函数的图象交于点E.
(1)求反比例函数的解析式;
(2)求点E的横坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小明在一次数学兴趣小组活动中,对一个数学问题作如下探究:
问题情境:(1)如图1,四边形中,,点为边的中点,连接并延长交的延长线于点,求证:;(表示面积)
问题迁移:(2)如图2:在已知锐角内有一个定点.过点任意作一条直线分别交射线于点.小明将直线绕着点旋转的过程中发现,的面积存在最小值,请问当直线在什么位置时,的面积最小,并说明理由.
实际应用:(3)如图3,若在道路之间有一村庄发生疫情,防疫部门计划以公路和经过防疫站的一条直线为隔离线,建立个面积最小的三角形隔离区,若测得试求的面积.(结果保留根号)(参考数据:)
拓展延伸:(4)如图4,在平面直角坐标系中,为坐标原点,点的坐标分别为,过点的直线与四边形一组对边相交,将四边形分成两个四边形,求其中以点为顶点的四边形面积的最大值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】张琪和爸爸到曲江池遗址公园运动,两人同时从家出发,沿相同路线前行,途中爸爸有事返回,张琪继续前行5分钟后也原路返回,两人恰好同时到家张琪和爸爸在整个运动过程中离家的路点y1(米),y2(米)与运动时间x(分)之间的函数关系如图所示
(1)求爸爸返问时离家的路程y2(米)与运动时间x(分)之间的函数关系式;
(2)张琪开始返回时与爸爸相距多少米?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com