精英家教网 > 初中数学 > 题目详情

【题目】小明在一次数学兴趣小组活动中,对一个数学问题作如下探究:

问题情境:(1)如图1,四边形中,,点边的中点,连接并延长交的延长线于点,求证:(表示面积)

问题迁移:(2)如图2:在已知锐角内有一个定点.过点任意作一条直线分别交射线于点.小明将直线绕着点旋转的过程中发现,的面积存在最小值,请问当直线在什么位置时,的面积最小,并说明理由.

实际应用:(3)如图3,若在道路之间有一村庄发生疫情,防疫部门计划以公路和经过防疫站的一条直线为隔离线,建立个面积最小的三角形隔离区,若测得试求的面积.(结果保留根号)(参考数据:)

拓展延伸:(4)如图4,在平面直角坐标系中,为坐标原点,点的坐标分别为,过点的直线与四边形一组对边相交,将四边形分成两个四边形,求其中以点为顶点的四边形面积的最大值.

【答案】1)证明见解析;(2)当直线旋转到点的中点时最小;(3;(410

【解析】

1)根据可以求得△ADE≌△FCE,就可以得出SADESFCE就可以得出结论;
2)根据问题情境的结论可以得出当直线旋转到点PMN的中点时SMON最小,过点MMGOBEFG.由全等三角形的性质可以得出结论;

3)如图3,作PP1OBMM1OB,垂足分别为P1M1,再根据条件由三角函数值就可以求出结论;

4)分情况讨论当过点P的直线l与四边形OABC的一组对边OCAB分别交于点MN,延长OCAB交于点D,由条件可以得出AD6,就可以求出△OAD的面积,再根据问题迁移的结论就可以求出最大值;
当过点P的直线l与四边形OABC的另一组对边CBOA分别交MN,延长CBx轴于T,由BC的坐标可得直线BC的解析式,就可以求出T的坐标,从而求出△OCT的面积,再由问题迁移的结论可以求出最大值,通过比较就可以求出结论.

1)证明:

边的中点,

2)当直线旋转到点的中点时,最小,如图2

过点的另一条直线于点

,过点

由问题情境可以得出当的中点时.

当点的中点时,最小

3)如图3,作,垂足分别为

中,

由问题迁移的结论知道,

时,的面积最小,

中,

4)①如图4,当过点的直线与四边形的一组对边分别交于点,延长交于点

由问题迁移的结论可知,当时,的面积最小,

四边形的面积最大.

垂足分别为

中点

②如图5,当过点的直线与四边形的另一组对边分别交延长轴于

设直线的解析式为,由题意,得

,解得

时,

由问题迁移的结论可知,当时,的面积最小,

四边形的面积最大.

综上所述:截得四边形面积的最大值为

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,点O为△ABC外接圆的圆心,以AB为腰作等腰△ABD,使底边AD经过点O,并分别交BC于点E、交⊙O于点F,若∠BAD30°

1)求证:BD是⊙O的切线;

2)当CA2CECB时,

①求∠ABC的度数;

的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形中,延长至点,且中点,连结

1)求证:的面积是的面积的倍.

2)若,求的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某超市用3400元购进AB两种文具盒共120个,这两种文具盒的进价、标价如下表:

价格/类型

A

B

进价(元/只)

15

35

标价(元/只)

25

50

1)这两种文具盒各购进多少只?

2)若A型文具盒按标价的9折出售,B型文具盒按标价的8折出售,那么这批文具盒全部售出后,超市共获利多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在阳光体育活动时间,小亮、小莹、小芳到学校乒乓球室打乒乓球,当时只有一副空球桌,他们只能选两人打第一场.

1)如果确定小亮打第一场,再从其余两人中随机选取一人打第一场,选中小莹的概率是________

2)如果确定小亮打第一场,用投掷硬币的方法确定小莹、小芳谁打第一场,并决定小亮做裁判,由小亮抛掷一枚硬币,规定正面朝上小莹胜,反面朝上小芳胜,最终胜两局以上者(包括两局)打第一场.小亮第一次投掷的结果是正面朝上,请用列表或画树状图的方法表示最后两次投掷硬币的所有情况,并求小芳打第一场的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在同一平面坐标系中,函数y=mx+m和y=﹣mx2+2x+2(m是常数,且m0)的图象可能是(  )

A. B. C. D.

【答案】D

【解析】A.由函数y=mx+m的图象可知m<0,即函数y=mx2+2x+2开口方向朝上,与图象不符,故A选项错误;

B.由函数y=mx+m的图象可知m<0,对称轴为x=<0,则对称轴应在y轴左侧,与图象不符,故B选项错误;

C.由函数y=mx+m的图象可知m>0,即函数y=mx2+2x+2开口方向朝下,与图象不符,故C选项错误;

D.由函数y=mx+m的图象可知m<0,即函数y=mx2+2x+2开口方向朝上,对称轴为x=<0,则对称轴应在y轴左侧,与图象相符,故D选项正确;

故选:D.

型】单选题
束】
10

【题目】如图,已知菱形ABCD的周长为16,面积为,EAB的中点,若P为对角线BD上一动点,则EP+AP的最小值为(  )

A. 2 B. 2 C. 4 D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,是⊙的直径,是⊙的弦,点延长线的一点,平分交⊙于点,过点,垂足为点

1)求证:是⊙的切线;

2)若,求⊙的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=﹣x2+x+3x轴交于点AB(点A在点B的左边),交y轴于点C,点P为抛物线对称轴上一点.则APC的周长最小值是_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD的边长为5,点A的坐标为(﹣40),点By轴上,若反比例函数k0)的图象过点C,则该反比例函数的表达式为(  )

A. B. C. D.

查看答案和解析>>

同步练习册答案