【题目】已知:在Rt△ABC中,∠B=90°,BC=4cm,AB=8cm,D、E、F分别为AB、AC、BC边上的中点.若P为AB边上的一个动点,PQ∥BC,且交AC于点Q,以PQ为一边,在点A的异侧作正方形PQMN,记正方形PQMN与矩形EDBF的公共部分的面积为y.
(1)如图,当AP=3cm时,求y的值;
(2)设AP=xcm,试用含x的代数式表示y(cm2);
(3)当y=2cm2时,试确定点P的位置.
【答案】(1)重合部分的面积应该是0.75cm2;(2)当0<x≤,y=0;当<x≤4,y=,当4<x≤,y=x;当<x<8,y=16﹣2x;(3)当x=7cm或x=cm时,y=2cm2.
【解析】
(1)先根据AP的长,求出PQ的值,然后看看正方形与矩形是否重合,若重合求出重合部分的线段的长,然后根据矩形的面积计算公式进行求解即可.
(2)要分四种情况进行讨论:
①当N在D点或D点左侧时,当正方形PQMN的边MN与矩形EDBF的边ED重合时,利用相似三角形的性质可得出x=,即0<x≤时,此时正方形与矩形没有重合,因此y=0;
②当N在D点右侧,而P点在D点左侧或与D点重合时,即<x≤4,此时正方形与矩形重合的面积应该是以DN为长,NM为宽的矩形,DN=PN﹣PD=PN﹣(AD﹣AP)=x﹣(4﹣x)=x﹣4.而NM=PQ=x,因此重合部分的面积应该是y=(x﹣4)×x=x2﹣2x;
③当P在D点右侧,而N点在B点左侧或与B点重合时,即4<x≤时,此时正方形重合部分的面积应该是以正方形边长为长,DE为宽的矩形的面积,PN=x,DE=2,因此此时重合部分的面积是y=x×2=x;
④当P在B左侧时,而N点在AB延长线上时,即<x<8时,此时重合部分的面积应该是以DE长为宽,PA长为长的矩形的面积.BP=AB﹣AP=8﹣x,BF=DE=2,因此此时重合部分的面积应该是y=(8﹣x)×2=16﹣2x.
(3)将y=2代入(2)的式子中,看看求出的x哪个符合条件即可.
(1)∵在Rt△ABC中,∠B=90°,BC=4cm,AB=8cm,
∴tanA==,
∵D是AB中点,
∴DE是△ABC的中位线,
∴AD=BD=4cm,DE=2cm,
∴Rt△APQ中,AP=3cm,
∴PQ=APtanA=3×=1.5cm,
∴DN=AN﹣AD=AP+PN﹣AD=3+1.5﹣4=0.5,
∴重合部分的面积应该是y=DN×MN=1.5×0.5=0.75cm2;
(2)当0<x≤,y=0;
当<x≤4,y=,
当4<x≤,y=x;
当<x<8,y=16﹣2x;
(3)当<x≤4时,如果y=2,2=,解得x=或x=(舍去);
当4<x≤时,如果y=2,x=2,也不符合题意,
当<x<8时,如果y=2,2=16﹣2x,解得x=7,因此当AP=7cm时,y=2cm2.
∴当x=7cm或x=cm时,y=2cm2.
科目:初中数学 来源: 题型:
【题目】如图,抛物线经过点和点,与y轴交于点C,点P为其顶点,对称轴l与x轴交于点D,抛物线上C、E两点关于对称轴l对称.
求抛物线的函数表达式;
点G是线段OC上一动点,是否存在这样的点G,使与相似,若存在,请求出点G坐标,若不存在请说明理由.
平移抛物线,其顶点P在直线上运动,移动后的抛物线与直线的另一交点为M,与原对称轴l交于点Q,当是以PM为直角边的直角三角形时,请写出点Q的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为弘扬中华优秀传统文化,某校开展“经典诵读”比赛活动,诵读材料有《论语》、《大学》、《中庸》(依次用字母A,B,C表示这三个材料),将A,B,C分别写在3张完全相同的不透明卡片的正面上,背面朝上洗匀后放在桌面上,比赛时小礼先从中随机抽取一张卡片,记下内容后放回,洗匀后,再由小智从中随机抽取一张卡片,他俩按各自抽取的内容进行诵读比赛.
(1)小礼诵读《论语》的概率是 ;(直接写出答案)
(2)请用列表或画树状图的方法求他俩诵读两个不同材料的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,点P的坐标为(,),点Q的坐标为(,),且,,若P,Q为某个矩形的两个顶点,且该矩形的边均与某条坐标轴垂直,则称该矩形为点P,Q的“相关矩形”.下图为点P,Q 的“相关矩形”的示意图.
(1)已知点A的坐标为(1,0).
①若点B的坐标为(3,1)求点A,B的“相关矩形”的面积;
②点C在直线x=3上,若点A,C的“相关矩形”为正方形,求直线AC的表达式;
(2)⊙O的半径为,点M的坐标为(m,3).若在⊙O上存在一点N,使得点M,N的“相关矩形”为正方形,求m的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知点A(12,0),O为坐标原点,P是线段OA上任一点(不含端点O、A),二次函数y1的图象过P、O两点,二次函数y2的图象过P、A两点,它们的开口均向下,顶点分别为B、C,射线OB与射线AC相交于点D.则当OD=AD=9时,这两个二次函数的最大值之和等于( )
A. 8 B. 3 C. 2 D. 6
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠ACB=90°,点D是AB边的中点,过D作DE⊥BC于点E,点P是边BC上的一个动点,AP与CD相交于点Q.当AP+PD的值最小时,AQ与PQ之间的数量关系是( )
A.AQ= PQ B.AQ=3PQ C.AQ=PQ D.AQ=4PQ
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我们知道不等式的两边加(或减)同一个数(或式子),不等号的方向不变.不等式组是否也具有类似的性质呢?请解答下列问题.
(1)完成下列填空:
已知 | 用“<”或“>”填空 |
5+2_____3+1 | |
﹣3﹣1_____﹣5﹣2 | |
1﹣2_____4+1 |
(2)一般地,如果那么a+c_____b+d(用“<”或“>”填空).请你说明上述性质的正确性.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com