精英家教网 > 初中数学 > 题目详情
9.分解因式:2ax-4ay=2a(x-2y).

分析 直接找出公因式2a,进而分解因式得出答案.

解答 解:2ax-4ay=2a(x-2y).
故答案为:2a(x-2y).

点评 此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

19.观察下列等式;
$\frac{1}{\sqrt{2}}$=$\frac{1•\sqrt{2}}{\sqrt{2}•\sqrt{2}}$=$\frac{\sqrt{2}}{(\sqrt{2})^{2}}$=$\frac{\sqrt{2}}{2}$
$\frac{1}{\sqrt{3}}$=$\frac{1•\sqrt{3}}{\sqrt{3}•\sqrt{3}}$=$\frac{\sqrt{3}}{(\sqrt{3})^{2}}$=$\frac{\sqrt{3}}{3}$

请解答下列问题:
(1)按以上规律写出$\frac{1}{\sqrt{5}}$=$\frac{\sqrt{5}}{5}$
(2)用含有n的代数式表示第n个等式:$\frac{1}{\sqrt{n}}$=$\frac{\sqrt{n}}{n}$(n为正整数);
(3)求$\frac{4}{\sqrt{2}}$-$\frac{6}{\sqrt{3}}$+$\frac{10}{\sqrt{5}}$-$\frac{12}{\sqrt{6}}$的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.如图,△ABC中,AB=m,BC=n(m、n为常数,n<m).点D是AB上的一点,且∠DCB=∠A,过点D作DE∥BC于点E.
(1)若m=8,n=4,试求BD;
(2)设△AED与△BCD的周长和为C,△ABC的周长为l.
探究:$\frac{C}{l}$的值是否存在最大或最小值?若存在,请求出这个值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.计算:$\sqrt{\frac{27}{c}}$+$\frac{1}{{c}^{2}}$$\sqrt{12{c}^{3}}$-$\frac{2c}{5}\sqrt{\frac{75}{{c}^{3}}}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.先化简,再求值:($\frac{{x}^{2}-y}{x}$-x-1)÷$\frac{{x}^{2}-{y}^{2}}{{x}^{2}-2xy+{y}^{2}}$,其中x=$\sqrt{5}$,y=$\sqrt{10}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.先化简,再求值:x(x+2)+(x-1)(x+1)-2x,其中x=$\sqrt{2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

1.如果$\sqrt{y-3}$与(2x-4)2互为相反数,那么2x-y的平方根是±1.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

18.如图,有以下3个条件:①AC=AB,②AB∥CD,③∠1=∠2,从这3个条件中任选2个作为题设,另1个作为结论,则组成的命题是真命题的概率是1.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.如图,在平面直角坐标系中,直线AB与x轴交于点B,与y轴交于点A,与反比例函数y=$\frac{k}{x}$(k≠0)的图象在第二象限交于点C,CE⊥x轴,垂足为点E,sin∠ABO=$\frac{\sqrt{5}}{5}$,OB=2,OE=1.
(1)求反比例函数的解析式;
(2)若点D是反比例函数图象在第四象限上的点,过点D作DF⊥y轴,垂足为点F,连接OD、BF,如果S△BAF=4S△DFO,求点D的坐标.

查看答案和解析>>

同步练习册答案