精英家教网 > 初中数学 > 题目详情

【题目】如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点四边形ABCD(顶点是网格线的交点),按要求画出四边形AB1C1D1和四边形AB2C2D2

(1)以A为旋转中心,将四边形ABCD顺时针旋转90°,得到四边形AB1C1D1
(2)以A为位似中心,将四边形ABCD作位似变换,且放大到原来的两倍,得到四边形AB2C2D2

【答案】
(1)解:如图,四边形AB1C1D1为所作


(2)解:如图,四边形AB2C2D2为所作


【解析】本题是旋转和位似的作图。(1)利用网格特点和旋转的性质画出点B、C、D的对称点,注意旋转方向;(2)抓住位似比位1:2,延长BA到B2, 使B2A=2BA,用同样的方法做出C、D的 对称点即可。
【考点精析】关于本题考查的作图-位似变换和图形的旋转,需要了解对应点到位似中心的距离比就是位似比,对应线段的比等于位似比,位似比也有顺序;已知图形的位似图形有两个,在位似中心的两侧各有一个.位似中心,位似比是它的两要素;每一个点都绕旋转中心沿相同方向转动了相同的角度,任意一对对应点与旋转中心的连线所成的角都是旋转角,对应点到旋转中心的距离相等.旋转的方向、角度、旋转中心是它的三要素才能得出正确答案.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,点AB的坐标分别为(10)(30),现同时将点AB分别向上平移2个单位长度,再向右平移1个单位长度,得到AB的对应点CD,连接ACBDCD.

(1)直接写出点CD的坐标,求出四边形ABDC的面积;

(2)x轴上是否存在一点F,使得三角形DFC的面积是三角形DFB面积的2倍,若存在,请求出点F的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知在RtABC中,ACB=90°,现按如下步骤作图:

分别以A,C为圆心,a为半径(a>AC)作弧,两弧分别交于M,N两点;

过M,N两点作直线MN交AB于点D,交AC于点E;

ADE绕点E顺时针旋转180°,设点D的像为点F

(1)请在图中直线标出点F并连接CF;

(2)求证:四边形BCFD是平行四边形;

(3)当B为多少度时,四边形BCFD是菱形

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在5×5的方格纸中,每一个小正方形的边长都为1.

(1)BCD是不是直角?请说明理由;

(2)求四边形ABCD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如果点P(2x+6,x-4)在平面直角坐标系的第四象限内,那么x的取值范围在数轴上可表示为

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】解一元一次不等式或不等式组

13(x+2)-8≥1-2(x-1)

2

3求不等式组的非负整数解

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读以下材料:对于三个数abc,用M{abc}表示这三个数的平均数,用min{abc}表示这三个数中最小的数.例如:M{123}min{123}=﹣1min{12a}

解决下列问题:

1)若min{22x+242x}2,则x的范围__________

2如果M{2x+12x}min{2x+12x},求x

根据,你发现了结论如果M{abc}min{abc},那么__________(填abc的大小关系)

运用的结论,若M{2x+y+2x+2y2xy}min{2x+y+2x+2y2xy},求x+y的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一次函数y1=kx+b和反比例函数y2= 的图象交于A、B两点.

(1)求一次函数y1=kx+b和反比例函数y2= 的解析式;
(2)观察图象写出y1<y2时,x的取值范围为
(3)求△OAB的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】函数y=x+x1的图象如图所示,下列对该函数性质的论断不可能正确的是( )

A.该函数的图象是中心对称图形
B.当x>0时,该函数在x=1时取得最小值2
C.在每个象限内,y的值随x值的增大而减小
D.y的值不可能为1

查看答案和解析>>

同步练习册答案