精英家教网 > 初中数学 > 题目详情

【题目】如图,四边形ABCD内接于⊙OAB是⊙O的直径,ACBD相交于点E,且DC2CECA

1)求证:BCCD

2)分别延长ABDC交于点P,若PBOBCD2,求⊙O的半径.

【答案】1)见解析,(2)⊙O的半径为4

【解析】

1)由DC2=CECA和∠ACD=DCE,可判断△CAD∽△CDE,得到∠CAD=CDE,再根据圆周角定理得∠CAD=CBD,所以∠CDB=CBD,于是利用等腰三角形的判定可得BC=DC

2)连结OC,如图,设⊙O的半径为r,先证明OCAD,利用平行线分线段成比例定理得到=2,则PC=2CD=4,然后证明△PCB∽△PAD,利用相似比得到,再利用比例的性质可计算出r的值.

1)证明:∵DC2CECA

而∠ACD=∠DCE

∴△CAD∽△CDE

∴∠CAD=∠CDE

∵∠CAD=∠CBD

∴∠CDB=∠CBD

BCDC

2)连结OC,如图,

设⊙O的半径为r

CDCB

∴∠BOC=∠BAD

OCAD

2

PC2CD4

∵∠PCB=∠PAD,∠CPB=∠APD

∴△PCB∽△PAD

,即

r4

即⊙O的半径为4

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】抛物线轴交于AB两点,点P在函数的图象上,若PAB为直角三角形,则满足条件的点P的个数为( ).

A. 2 B. 3 C. 4 D. 6

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点P是边长为的正方形ABCD的对角线BD上的动点,过点P分别作PEBC于点E,PFDC于点F,连接AP并延长,交射线BC于点H,交射线DC于点M,连接EFAH于点G,当点PBD上运动时(不包括B、D两点),以下结论中:①MF=MC;AHEF;AP2=PMPH;EF的最小值是.其中正确结论是(  )

A. ①③ B. ②③ C. ②③④ D. ②④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知关于x的方程x2+2m+1x-1+m2=0有实数根,

1)求m的取值范围;

2)若方程的一个根为1,求m的值及方程的另一个根;

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,弓形ABC中,∠BAC60°,BC2,若点P在优弧BAC上由点B向点C移动,记△PBC的内心为I,点I随点P的移动所经过的路程为m,则m的取值范围为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】根据李飞与刘亮射击训练的成绩绘制了如图所示的折线统计图.根据图中所提供的信息,若要推荐一位成绩较稳定的选手去参赛,应推荐______.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了解某校九年级学生立定跳远水平,随机抽取该年级50名学生进行测试,并把测试成绩(单位:m)绘制成不完整的频数分布表和频数分布直方图.

学生立定跳远测试成绩的频数分布表

分组

频数

1.2≤x<1.6

a

1.6≤x<2.0

12

2.0≤x<2.4

b

2.4≤x<2.8

10

请根据图表中所提供的信息,完成下列问题:

(1)表中a   b   ,样本成绩的中位数落在   范围内;

(2)请把频数分布直方图补充完整;

(3)该校九年级共有850名学生,估计该年级学生立定跳远成绩在2.4≤x<2.8范围内的学生有多少人?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABCD,且AB2CDEAB的中点,F是边BC上的动点,EFBD相交于点M

(1)求证:△EDM∽△FBM

(2)FBC的中点,BD12,求BM的长;

(3)ADBCBD平分∠ABC,点P是线段BD上的动点,是否存在点P使DPBPBFCD,若存在,求出∠CPF的度数;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,抛物线,与x轴交于点CC在点D的左侧,与y轴交于点A

求抛物线顶点M的坐标;

若点A的坐标为轴,交抛物线于点B,求点B的坐标;

的条件下,将抛物线在BC两点之间的部分沿y轴翻折,翻折后的图象记为G,若直线与图象G有一个交点,结合函数的图象,求m的取值范围.

查看答案和解析>>

同步练习册答案