【题目】如图,AB∥CD,且AB=2CD,E是AB的中点,F是边BC上的动点,EF与BD相交于点M.
(1)求证:△EDM∽△FBM;
(2)若F是BC的中点,BD=12,求BM的长;
(3)若AD=BC,BD平分∠ABC,点P是线段BD上的动点,是否存在点P使DPBP=BFCD,若存在,求出∠CPF的度数;若不存在,请说明理由.
【答案】(1)证明见解析;(2)BM=4;(3)存在,∠CPF=30°.
【解析】
(1)根据题意及中点的性质得出四边形CBED是平行四边形,根据平行的性质得出∠EDB=∠FBM,∠DME=∠BMF,从而得出△EDM∽△FBM;
(2)根据(1)中三角形相似的比例关系即可推理得出答案;
(3)先由角平分线的定义和平行线的性质可得DC=BC,结合DPBP=BFCD可证明△PDC∽△FBP,从而∠BPF=∠PCD,利用三角形内角和及平角定义可证∠PDC=∠CPF,然后通过证明△ADE是等边三角形,可进一步求出结论.
(1)证明:∵AB=2CD,点E是AB的中点,
∴DC=EB.
又∵AB∥CD,
∴四边形BCDE为平行四边形.
∴ED∥BC.
∴∠EDB=∠FBM.
又∵∠DME=∠BMF,
∴△EDM∽△FBM;
(2)解:∵△EDM∽△FBM,
∴,
∵F是BC的中点,
∴DE=BC=2BF,
∴DM=2BM,
∴DB=DM+BM=3BM,
∵DB=12,
∴BM=DB=×12=4;
(3)存在,∵DC∥AB,
∴∠CDB=∠ABD,
∵BD平分∠ABC,
∴∠CBD=∠ABD,
∴∠CDB=∠CBD,
∴DC=BC,
∵DPBP=BFCD,
∴,
∴△PDC∽△FBP,
∴∠BPF=∠PCD,
∵∠DPC+∠CPF+∠BPF=180°,
∠DPC+∠PDC+∠PCD=180°,
∴∠PDC=∠CPF,
∵AD=BC=DC=BE=AE,
∴△ADE是等边三角形,
∴∠AED=60°,
∴∠EDB=∠PDC=30°,
∴∠CPF=30°.
科目:初中数学 来源: 题型:
【题目】如图,已知二次函数y=ax2+bx+c的图象经过点C(0,3),与x轴分别交于点A,点B(3,0),AB=4.
(1)求二次函数y=ax2+bx+c的表达式;
(2)点M是二次函数对称轴上一动点,当点M运动到什么位置时,△ACM的周长最小?求出此时M点的坐标;
(3)点P是直线BC上方的抛物线上一动点,当点P运动到什么位置时,四边形ACPB的面积最大?求出此时P点的坐标和四边形ACPB的最大面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形ABCD内接于⊙O,AB是⊙O的直径,AC和BD相交于点E,且DC2=CECA.
(1)求证:BC=CD;
(2)分别延长AB,DC交于点P,若PB=OB,CD=2,求⊙O的半径.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某小区改善生态环境,实行生活垃圾的分类处理,将生活垃圾分成三类:厨房垃圾、可回收垃圾和其他垃圾,分别记为m,n,p,并且设置了相应的垃圾箱,“厨房垃圾”箱,“可回收垃圾”箱和“其他垃圾”箱,分别记为A,B,C.
(1)若将三类垃圾随机投入三类垃圾箱,请用画树状图的方法求垃圾投放正确的概率;
(2)为了了解居民生活垃圾分类投放的情况,现随机抽取了小区三类垃圾箱中总共1 000吨生活垃圾,数据统计如下(单位:吨):
A | B | C | |
m | 400 | 100 | 100 |
n | 30 | 240 | 30 |
p | 20 | 20 | 60 |
请根据以上信息,试估计“厨房垃圾”投放正确的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图有两个可以自由转动的均匀转盘,A,B两个转盘被分成几个面积相等的扇形,并且在每个扇形内标上数字,转动转盘后,如果指针指在分割线上,那么重转一次,直到指针指向某一个扇形内为止.
(1)只转动A转盘,转盘停止后指针指向数字2的概率.
(2)如果同时转动A,B两个转盘,转盘停止后,将两个指针所指的数字相加,那么和是偶数的概率是多少,用树形图或表格说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一次函数y1=ax+b(a≠0)的图象与反比例函数y2=(k为常数,k≠0)的图象交于A、B两点,过点A作AC⊥x轴,垂足为C,连接OA,已知OC=2,tan∠AOC=,B(m,﹣2)
(1)求一次函数和反比例函数的解析式.
(2)结合图象直接写出:当y1>y2时,x的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,⊙O的弦AD∥BC,过点D的切线交BC的延长线于点E,AC∥DE交BD于点H,DO及延长线分别交AC、BC于点G、F.
(1)求证:DF垂直平分AC;
(2)求证:FC=CE;
(3)若弦AD=5cm,AC=8cm,求⊙O的半径.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,BD是△ABC的角平分线,它的垂直平分线分别交AB,BD,BC于点E,F,G,连接ED,DG.
(1)请判断四边形EBGD的形状,并说明理由;
(2)若∠ABC=30°,∠C=45°,ED=2,点H是BD上的一个动点,求HG+HC的最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com