精英家教网 > 初中数学 > 题目详情

【题目】如图,ABCD,且AB2CDEAB的中点,F是边BC上的动点,EFBD相交于点M

(1)求证:△EDM∽△FBM

(2)FBC的中点,BD12,求BM的长;

(3)ADBCBD平分∠ABC,点P是线段BD上的动点,是否存在点P使DPBPBFCD,若存在,求出∠CPF的度数;若不存在,请说明理由.

【答案】(1)证明见解析;(2)BM4(3)存在,∠CPF30°.

【解析】

(1)根据题意及中点的性质得出四边形CBED是平行四边形,根据平行的性质得出∠EDB=∠FBM,∠DME=∠BMF,从而得出EDM∽△FBM

(2)根据(1)中三角形相似的比例关系即可推理得出答案;

3)先由角平分线的定义和平行线的性质可得DCBC,结合DPBPBFCD可证明△PDC∽△FBP,从而∠BPF=∠PCD,利用三角形内角和及平角定义可证∠PDC=∠CPF,然后通过证明△ADE是等边三角形,可进一步求出结论.

(1)证明:∵AB2CD,点EAB的中点,

DCEB

又∵ABCD

∴四边形BCDE为平行四边形.

EDBC

∴∠EDB=∠FBM

又∵∠DME=∠BMF

∴△EDM∽△FBM

(2)解:∵△EDM∽△FBM

FBC的中点,

DEBC2BF

DM2BM

DBDM+BM3BM

DB12

BMDB×124

(3)存在,∵DCAB

∴∠CDB=∠ABD

BD平分∠ABC

∴∠CBD=∠ABD

∴∠CDB=∠CBD

DCBC

DPBPBFCD

∴△PDC∽△FBP

∴∠BPF=∠PCD

∵∠DPC+CPF+BPF180°,

DPC+PDC+PCD180°,

∴∠PDC=∠CPF

ADBCDCBEAE

∴△ADE是等边三角形,

∴∠AED60°,

∴∠EDB=∠PDC30°,

∴∠CPF30°.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知二次函数y=ax2+bx+c的图象经过点C(03),与x轴分别交于点A,点B(30)AB=4

(1)求二次函数y=ax2+bx+c的表达式;

(2)M是二次函数对称轴上一动点,当点M运动到什么位置时,△ACM的周长最小?求出此时M点的坐标;

(3)P是直线BC上方的抛物线上一动点,当点P运动到什么位置时,四边形ACPB的面积最大?求出此时P点的坐标和四边形ACPB的最大面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD内接于⊙OAB是⊙O的直径,ACBD相交于点E,且DC2CECA

1)求证:BCCD

2)分别延长ABDC交于点P,若PBOBCD2,求⊙O的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某小区改善生态环境,实行生活垃圾的分类处理,将生活垃圾分成三类:厨房垃圾、可回收垃圾和其他垃圾,分别记为m,n,p,并且设置了相应的垃圾箱,“厨房垃圾”箱,“可回收垃圾”箱和“其他垃圾”箱,分别记为A,B,C.

(1)若将三类垃圾随机投入三类垃圾箱,请用画树状图的方法求垃圾投放正确的概率;

(2)为了了解居民生活垃圾分类投放的情况,现随机抽取了小区三类垃圾箱中总共1 000吨生活垃圾,数据统计如下(单位:吨):

A

B

C

m

400

100

100

n

30

240

30

p

20

20

60

请根据以上信息,试估计“厨房垃圾”投放正确的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,⊙O的直径AB10cm,弦BC=8cm,∠ACB的平分线交⊙O于点D.连接ADBD.求四边形ABCD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图有两个可以自由转动的均匀转盘,AB两个转盘被分成几个面积相等的扇形,并且在每个扇形内标上数字,转动转盘后,如果指针指在分割线上,那么重转一次,直到指针指向某一个扇形内为止.

1)只转动A转盘,转盘停止后指针指向数字2的概率.

2)如果同时转动AB两个转盘,转盘停止后,将两个指针所指的数字相加,那么和是偶数的概率是多少,用树形图或表格说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一次函数y1=ax+b(a≠0)的图象与反比例函数y2=(k为常数,k≠0)的图象交于A、B两点,过点AACx轴,垂足为C,连接OA,已知OC=2,tanAOC=,B(m,﹣2)

(1)求一次函数和反比例函数的解析式.

(2)结合图象直接写出:当y1>y2时,x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,O的弦ADBC,过点D的切线交BC的延长线于点EACDEBD于点HDO及延长线分别交ACBC于点GF

(1)求证:DF垂直平分AC

(2)求证:FCCE

(3)若弦AD5cmAC8cm,求O的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,BD是△ABC的角平分线,它的垂直平分线分别交AB,BD,BC于点E,F,G,连接ED,DG.

(1)请判断四边形EBGD的形状,并说明理由;

(2)若∠ABC=30°,∠C=45°,ED=2,点H是BD上的一个动点,求HG+HC的最小值.

查看答案和解析>>

同步练习册答案