【题目】如图,⊙O的直径AB为10cm,弦BC=8cm,∠ACB的平分线交⊙O于点D.连接AD,BD.求四边形ABCD的面积.
【答案】S四边形ADBC=49(cm2).
【解析】
根据直径所对的角是90°,判断出△ABC和△ABD是直角三角形,根据圆周角∠ACB的平分线交⊙O于D,判断出△ADB为等腰直角三角形,根据勾股定理求出AD、BD、AC的值,再根据S四边形ADBC=S△ABD+S△ABC进行计算即可.
∵AB为直径,
∴∠ADB=90°,
又∵CD平分∠ACB,即∠ACD=∠BCD,
∴,
∴AD=BD,
∵直角△ABD中,AD=BD,AD2+BD2=AB2=102,
则AD=BD=5,
则S△ABD=ADBD=×5×5=25(cm2),
在直角△ABC中,AC==6(cm),
则S△ABC=ACBC=×6×8=24(cm2),
则S四边形ADBC=S△ABD+S△ABC=25+24=49(cm2).
科目:初中数学 来源: 题型:
【题目】如图,△ABC内接于圆O,∠BOC=120°,AD为圆O的直径.AD交BC于P点且PB=1,PC=2,则AC的长为( )
A. B. C. 3D. 2
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,弓形ABC中,∠BAC=60°,BC=2,若点P在优弧BAC上由点B向点C移动,记△PBC的内心为I,点I随点P的移动所经过的路程为m,则m的取值范围为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了解某校九年级学生立定跳远水平,随机抽取该年级50名学生进行测试,并把测试成绩(单位:m)绘制成不完整的频数分布表和频数分布直方图.
学生立定跳远测试成绩的频数分布表
分组 | 频数 |
1.2≤x<1.6 | a |
1.6≤x<2.0 | 12 |
2.0≤x<2.4 | b |
2.4≤x<2.8 | 10 |
请根据图表中所提供的信息,完成下列问题:
(1)表中a= ,b= ,样本成绩的中位数落在 范围内;
(2)请把频数分布直方图补充完整;
(3)该校九年级共有850名学生,估计该年级学生立定跳远成绩在2.4≤x<2.8范围内的学生有多少人?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知关于x的一元二次方程x2﹣(m+1)x+(m2+1)=0有两个相等的实数根.
(1)求m的值;
(2)将y=﹣x2+(m+1)x﹣(m2+1)的图象向左平移3个单位长度,再向上平移2个单位长度,写出变化后函数的表达式;
(3)在(2)的条件下,当直线y=2x+n与变化后的图象有公共点时,求n2﹣4n的最小值
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB∥CD,且AB=2CD,E是AB的中点,F是边BC上的动点,EF与BD相交于点M.
(1)求证:△EDM∽△FBM;
(2)若F是BC的中点,BD=12,求BM的长;
(3)若AD=BC,BD平分∠ABC,点P是线段BD上的动点,是否存在点P使DPBP=BFCD,若存在,求出∠CPF的度数;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一次函数y=kx+b的图象与反比例函数y=的图象交于A、B两点.
(1)利用图中条件,求反比例函数的解析式及n的值.
(2)求一次函数的解析式.
(3)根据图象写出使一次函数的值大于反比例函数值的x的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知A(﹣4,2)、B(n,﹣4)两点是一次函数y=kx+b和反比例函数y=图象的两个交点.
(1)求一次函数和反比例函数的解析式;
(2)求△AOB的面积;
(3)观察图象,直接写出不等式kx+b﹣>0的解集.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在△ABC中,已知∠CAB=60°,D、E分别是边AB、AC上的点,且∠AED=60°,ED+DB=CE,∠CDB=2∠CDE,则∠DCB等于_____.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com