精英家教网 > 初中数学 > 题目详情

【题目】如图,在平面直角坐标系xOy中,双曲线yk≠0)与直线y的交点为Aa,﹣1),B(2,b)两点,双曲线上一点P的横坐标为1,直线PAPBx轴的交点分别为点MN,连接AN

(1)直接写出ak的值;

(2)求证:PMPNPMPN

【答案】(1)k=2;(2)详见解析;

【解析】

(1)依据双曲线yk≠0)与直线y的交点为Aa,﹣1),B(2,b)两点,可得点A与点B关于原点对称,进而得到ak的值;

(2)根据双曲线y上一点P的横坐标为1,可得点P的坐标为(1,2),进而得到直线PAPB的函数表达式分别为yx+1,y=﹣x+3,求得直线PAPBx轴的交点坐标分别为M(﹣1,0),N(3,0),即可得到PMPNPMPN

解:(1)∵双曲线yk≠0)与直线y的交点为Aa,﹣1),B(2,b)两点,

∴点A与点B关于原点对称,

a=﹣2,b=1,

∴把A(﹣2,﹣1)代入双曲线y,可得k=2;

(2)证明:∵双曲线y上一点P的横坐标为1,

∴点P的坐标为(1,2),

∴直线PAPB的函数表达式分别为yx+1,y=﹣x+3,

∴直线PAPBx轴的交点坐标分别为M(﹣1,0),N(3,0),

PM=2PN=2MN=4,

PMPNPM2+PN2MN2

∴∠MPN=90°,

PMPN

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,半径为5的⊙Py轴交于点M(0,﹣4),N(0,﹣10)

(1)求点P的坐标;

(2)将⊙P绕点O顺时针方向旋转90°后得⊙A,交x轴于B、C,求过A、B、C三个点的抛物线的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知∠MON=30°BOM上一点,BAONA,四边形ABCD为正方形,P为射线BM上一动点,连结CP,将CP绕点C顺时针方向旋转90°CE,连结BE,若AB=4,则BE的最小值为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知反比例函数y =的图象经过点A(1,-3),一次函数y =kx +b的图象经过点A与点C(0,-4),且与反比例函数的图象相交于另一点B.试确定点B的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,O的半径为3,A,P两点在O上,点B在O内,tan∠APB=,AB⊥AP.如果OBOP,那么OB的长为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,AB两点的坐标分别为A(2,2),B(2,﹣2).对于给定的线段AB及点PQ,给出如下定义:若点Q关于AB所在直线的对称点Q′落在△ABP的内部(不含边界),则称点Q是点P关于线段AB的内称点.

(1)已知点P(4,﹣1).

Q1(1,﹣1),Q2(1,1)两点中,是点P关于线段AB的内称点的是   

若点M在直线yx﹣1上,且点M是点P关于线段AB的内称点,求点M的横坐标xM的取值范围;

(2)已知点C(3,3),⊙C的半径为r,点D(4,0),若点E是点D关于线段AB的内称点,且满足直线DEC相切,求半径r的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,抛物线C1:y=mx2﹣2mx+m+4与y轴交于点A(0,3),与x轴交于点B、C(点B在点C左侧).

(1)求该抛物线的解析式;

(2)求点B的坐标;

(3)若抛物线C2:y=a(x﹣1)2﹣1(a≠0)与线段AB恰有一个公共点,结合函数的图象,求a的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy的中,一次函数ykx+bk≠0)的图象与反比例函数ym≠0)的图象交于二、四象限内的AB两点,与x轴交于C点,点B的坐标为(6,n),线段OAEx轴上一点,且tan∠AOE

(1)求该反比例函数和一次函数的解析式;

(2)求△A0B的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知关于x的方程x2+mx+m﹣3=0.

(1)若该方程的一个根为2,求m的值及方程的另一个根;

(2)求证:不论m取何实数,该方程都有两个不相等的实数根.

查看答案和解析>>

同步练习册答案