精英家教网 > 初中数学 > 题目详情

【题目】在平面直角坐标系xOy中,抛物线C1:y=mx2﹣2mx+m+4与y轴交于点A(0,3),与x轴交于点B、C(点B在点C左侧).

(1)求该抛物线的解析式;

(2)求点B的坐标;

(3)若抛物线C2:y=a(x﹣1)2﹣1(a≠0)与线段AB恰有一个公共点,结合函数的图象,求a的取值范围.

【答案】(1)y=﹣x2+2x+3;(2)B(﹣1,0);(3)a的取值范围为≤a≤4.

【解析】

(1)直接把点A的坐标代入ymx2﹣2mx+m+4m+4=3,然后求出m的值即可得到抛物线的解析式;

(2)利用抛物线与x轴的交点问题,通过解方程x2+2x+3=0可得到B点坐标;

(3)抛物线yax﹣1)2﹣1(a≠0)的顶点坐标为(1,﹣1),则开口向上,根据二次函数的性质,抛物线C2与线段AB的公共点为B点时,a最小;当抛物线C2与线段AB的公共点为A点时,a最大,然后把AB两点的坐标分别代入计算出对应的a的值,从而可确定a的取值范围.

(1)把A(0,3)代入y=mx2﹣2mx+m+4得m+4=3,解得m=﹣1,

所以抛物线的解析式为y=﹣x2+2x+3;

(2)当y=0时,﹣x2+2x+3=0,解得x1=﹣1,x2=3,

所以B(﹣1,0);

(3)抛物线C2:y=a(x﹣1)2﹣1(a≠0)的顶点坐标为(1,﹣1),

因为抛物线C2与线段AB恰有一个公共点,则开口向上,

当抛物线C2与线段AB的公共点为B点时,a最小,把B(﹣1,0)代入y=a(x﹣1)2﹣1得4a﹣1=0,解得a=

当抛物线C2与线段AB的公共点为A点时,a最大,把A(0,3)代入y=a(x﹣1)2﹣1得a﹣1=3,解得a=4,

所以a的取值范围为≤a≤4.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知二次函数y=x2+bx+c的图象经过点(4,3),(3,0).

(1)求b、c的值;

(2)求出该二次函数图象的顶点坐标和对称轴,并在所给坐标系中画出该函数的图象

(3)该函数的图象经过怎样的平移得到y=x2的图象

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校就遇见路人摔倒后如何处理的问题,随机抽取该校部分学生进行问卷调查,图1和图2是整理数据后绘制的两幅不完整的统计图. 请根据图中提供的信息,解答下列问题:

(1)该校随机抽查了 名学生?请将图1补充完整;

(2)在图2中,视情况而定部分所占的圆心角是 度;

(3)在这次调查中,甲、乙、丙、丁四名学生都选择马上救助,现准备从这四人中随机抽取两人进行座谈,试用列表或树形图的方法求抽取的两人恰好是甲和乙的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,双曲线yk≠0)与直线y的交点为Aa,﹣1),B(2,b)两点,双曲线上一点P的横坐标为1,直线PAPBx轴的交点分别为点MN,连接AN

(1)直接写出ak的值;

(2)求证:PMPNPMPN

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数的解析式是y=x2﹣2x﹣3.

(1)与y轴的交点坐标是   ,顶点坐标是   

(2)在坐标系中利用描点法画出此抛物线;

x

y

(3)结合图象回答:当﹣2<x<2时,函数值y的取值范围是   

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在四边形中,, 的中点.以每秒1个单位长度的速度从点出发,沿向点运动;同时以每秒3个单位长度的速度从 出发,沿向点运动.停止运动时,点也随之停止运动.当运动时间秒时,以点为顶点的四边形是平行四边形.的值为_________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,对于PQ两点给出如下定义:若点P到两坐标轴的距离之和等于点Q到两坐标轴的距离之和,则称PQ两点为同族点.下图中的PQ两点即为同族点.

(1)已知点A的坐标为(,1),

①在点R(0,4),S(2,2),T(2, )中,为点A的同族点的是

②若点Bx轴上,且AB两点为同族点,则点B的坐标为

(2)直线l ,与x轴交于点C,与y轴交于点D

M为线段CD上一点,若在直线上存在点N,使得MN两点为同族点,求n的取值范围;

M为直线l上的一个动点,若以(m,0)为圆心, 为半径的圆上存在点N,使得MN两点为同族点,直接写出m的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一辆客车从甲地开往乙地,一辆出租车从乙地开往甲地,两车同时出发,设客车离甲地的距离为千米,出租车离甲地的距离为千米,两车行驶的时间为小时,关于的函数图像如图所示:

1)根据图像,求出关于的函数关系式;

2)设两车之间的距离为千米.

①求两车相遇前关于的函数关系式;

②求出租车到达甲地后关于的函数关系式;

3)甲、乙两地间有两个加油站,相距200千米,若客车进入加油站时,出租车恰好进入加油站,求加油站离甲地的距离.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,将一张直角三角形ABC纸片沿斜边AB上的中线CD剪开,得到△ACD,再将△ACD沿DB方向平移到△A′C′D′的位置,若平移开始后点D′未到达点B时,A′C′CDED′C′CB于点F,连接EF,当四边形EDD′F为菱形时,试探究△A′DE的形状,并判断△A′DE△EFC′是否全等?请说明理由.

查看答案和解析>>

同步练习册答案