精英家教网 > 初中数学 > 题目详情

【题目】已知过原点O的两直线与圆心为M(0,4),半径为2的圆相切,切点分别为P、Q,PQ交y轴于点K,抛物线经过P、Q两点,顶点为N(0,6),且与x轴交于A、B两点.
(1)求点P的坐标;
(2)求抛物线解析式;
(3)在直线y=nx+m中,当n=0,m≠0时,y=m是平行于x轴的直线,设直线y=m与抛物线相交于点C、D,当该直线与⊙M相切时,求点A、B、C、D围成的多边形的面积(结果保留根号).

【答案】
(1)解:如图1,

∵⊙M与OP相切于点P,

∴MP⊥OP,即∠MPO=90°.

∵点M(0,4)即OM=4,MP=2,

∴OP=2

∵⊙M与OP相切于点P,⊙M与OQ相切于点Q,

∴OQ=OP,∠POK=∠QOK.

∴OK⊥PQ,QK=PK.

∴PK= = =

∴OK= =3.

∴点P的坐标为( ,3)


(2)解:如图2,

设顶点为(0,6)的抛物线的解析式为y=ax2+6,

∵点P( ,3)在抛物线y=ax2+6上,

∴3a+6=3.

解得:a=﹣1.

则该抛物线的解析式为y=﹣x2+6


(3)解:当直线y=m与⊙M相切时,

则有 =2.

解得;m1=2,m2=6.

①m=2时,如图3,

则有OH=2.

当y=2时,解方程﹣x2+6=2得:x=±2,

则点C(2,2),D(﹣2,2),CD=4.

同理可得:AB=2

则S梯形ABCD= (DC+AB)OH= (4+2 )×2=4+2

②m=6时,如图4,

此时点C、点D与点N重合.

SABC= ABOC= ×2 ×6=6

综上所述:点A、B、C、D围成的多边形的面积为4+2 或6


【解析】(1)由切线的性质可∠MPO=90°,根据勾股定理可求出PO,然后由面积法可求出PK,然后运用勾股定理可求出OK,就可得到点P的坐标.(2)可设顶点为(0,6)的抛物线的解析式为y=ax2+6,然后将点P的坐标代入就可求出抛物线的解析式.(3)直线y=m与⊙M相切有两种可能,只需对这两种情况分别讨论就可求出对应多边形的面积.
【考点精析】通过灵活运用切线长定理和等腰三角形的性质,掌握从圆外一点引圆的两条切线,它们的切线长相等圆心和这一点的连线平分两条切线的夹角;等腰三角形的两个底角相等(简称:等边对等角)即可以解答此题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】定义{a,b,c}为函数y=ax2+bx+c的“特征数”.
(1)“特征数”为{﹣1,2,3}的函数解析式为 , 将“特征数”为{0,1,1}的函数向下平移两个单位以后得到的函数解析式为
(2)我们把横、纵坐标均为整数的点称为“整点”,试问:在上述两空填写的函数图象围成的封闭图形(包含边界)内共有多少个整点?请给出详细的运算过程;
(3)定义“特征数”的运算:①{a1 , b1 , c1}+{a2 , b2 , c2}={a1+a2 , b1+b2 , c1+c2};②λ{a1 , b1 , c1}={λa1 , λb1 , λc1}(其中λ为任意常数).试问:“特征数”为{﹣1,2,3}+λ{0,1,﹣1}的函数是否过定点?如果过定点,请计算出该定点坐标;如果不存在,请说明你的理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知直线l:y=kx+b(k≠0)的图象与x轴、y轴交于A、B两点,A(﹣2,0),B(0,1).

(1)求直线l的函数表达式;

(2)若P是x轴上的一个动点,请直接写出当PAB是等腰三角形时P的坐标;

(3)在y轴上有点C(0,3),点D在直线l上,若ACD面积等于4,求点D的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列几何体中,同一个几何体的主视图与俯视图不同的是(
A.圆柱
B.正方体
C.圆锥
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在边为的1正方形组成的网格中,建立平面直角坐标系,若A(﹣4,2)、B(﹣2,3)、C(﹣1,1),将△ABC沿着x轴翻折后,得到△DEF,点B的对称点是点E,求过点E的反比例函数解析式,并写出第三象限内该反比例函数图象所经过的所有格点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】有2条生产线计划在一个月(30天)内组装520台产品(每天产品的产量相同),按原先的组装速度,不能完成任务;若加班生产,每条生产线每天多组装2台产品,能提前完成任务.
(1)每条生产线原先每天最多能组装多少台产品?
(2)要按计划完成任务,策略一:增添1条生产线,共要多投资19000元;策略二:按每天能组装最多台数加班生产,每条生产线每天共要多花费350元;选哪一个策略较省费用?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知四边形ABCD为等腰梯形,AD∥BC,AB=CD,AD= ,E为CD中点,连接AE,且AE=2 ,∠DAE=30°,作AE⊥AF交BC于F,则BF=(
A.1
B.3﹣
C. ﹣1
D.4﹣2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,⊙M过原点O,与x轴交于A(4,0),与y轴交于B(0,3),点C为劣弧AO的中点,连接AC并延长到D,使DC=4CA,连接BD.
(1)求⊙M的半径;
(2)证明:BD为⊙M的切线;
(3)在直线MC上找一点P,使|DP﹣AP|最大.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】有一列按一定顺序和规律排列的数:
第一个数是
第二个数是
第三个数是

对任何正整数n,第n个数与第(n+1)个数的和等于
(1)经过探究,我们发现:
设这列数的第5个数为a,那么 ,哪个正确?
请你直接写出正确的结论;
(2)请你观察第1个数、第2个数、第3个数,猜想这列数的第n个数(即用正整数n表示第n数),并且证明你的猜想满足“第n个数与第(n+1)个数的和等于 ”;
(3)设M表示 ,…, ,这2016个数的和,即
求证:

查看答案和解析>>

同步练习册答案