【题目】如图,抛物线交轴于,两点,交轴于点,连接,点为抛物线上一动点.
(1)求抛物线的解析式;
(2)当点到直线的距离为时,求点的横坐标;
(3)当和的面积相等时,请直接写出点的坐标.
【答案】(1);(2)点的横坐标为或;(3)或或
【解析】
(1)把,代入解析式即可求解; (2)过P作,轴交AB于D,构建直角三角形,利用三角函数建立与PD的关系即可求解; (3)△ACP和△ABC的面积相等,过作的平行线与抛物线的交点符合题意,再把向上平移两平行线间的距离得另两个交点也符合题意,联立两个解析式即可求解.
解:(1)把,代入得
解得:
所以,抛物线的解析式为:
(2)过点作于,过点作轴交直线于,
则,
,
,,
直线的解析式为:
又
设点,
,
,,
当时,解得:,
当,方程无解.
故点的横坐标为或
(3)如图,
过B作,则,
,,
所以设 为,把代入得,,
所以:
所以 解得:,
所以.
因为: ,所以,又,
所以,把向上平移4个单位长度得:,
所以 ,解得: ,
所以 ,
所以P的坐标为或或
科目:初中数学 来源: 题型:
【题目】工人师傅用一块长为10dm,宽为6dm的矩形铁皮制作一个无盖的长方体容器,需要将四角各裁掉一个正方形.(厚度不计)
(1)在图中画出裁剪示意图,用实线表示裁剪线,虚线表示折痕;并求长方体底面面积为12dm2时,裁掉的正方形边长多大?
(2)若要求制作的长方体的底面长不大于底面宽的五倍,并将容器进行防锈处理,侧面每平方分米的费用为0.5元,底面每平方分米的费用为2元,裁掉的正方形边长多大时,总费用最低,最低为多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,⊙O的半径为1,点A在x轴的正半轴上,B为⊙O上一点,过点A、B的直线与y轴交于点C,且OA2=ABAC.
(1)求证:直线AB是⊙O的切线;
(2)若AB=,求直线AB对应的函数表达式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=ax2+bx﹣1(a≠0)交x轴于A,B(1,0)两点,交y轴于点C,一次函数y=x+3的图象交坐标轴于A,D两点,E为直线AD上一点,作EF⊥x轴,交抛物线于点F
(1)求抛物线的解析式;
(2)若点F位于直线AD的下方,请问线段EF是否有最大值?若有,求出最大值并求出点E的坐标;若没有,请说明理由;
(3)在平面直角坐标系内存在点G,使得G,E,D,C为顶点的四边形为菱形,请直接写出点G的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,为的直径,于,点是弧上的任一点,过点作的切线交于点.连接交于.
(1)求证:;
(2)填空:①当_____时,四边形是正方形;
②当_____时,四边形是菱形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,以点A为中心,把△ABC逆时针旋转120°,得到△AB'C′(点B、C的对应点分别为点B′、C′),连接BB',若AC'∥BB',则∠CAB'的度数为( )
A.45°B.60°C.70°D.90°
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知A(-4,n)、B(3,4)是一次函数y1=kx+b的图象与反比例函数的图象的两个交点,过点D(t,0)(0<t<3)作x轴的垂线,分别交双曲线和直线y1=kx+b于P、Q两点
(1) 直接写出反比例函数和一次函数的解析式
(2) 当t为何值时,S△BPQ=S△APQ
(3) 以PQ为边在直线PQ的右侧作正方形PQMN,试说明:边QM与双曲线(x>0)始终有交点
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】2019年“519(我要走)全国徒步日(江夏站)”暨第六届“环江夏”徒步大会5月19日在美丽的花山脚下降重举行.组委会(活动主办方)为了奖励活动中取得了好成绩的参赛选手,计划购买共100件的甲、乙两种纪念品发放.其中甲种纪念品每件售价120元,乙种纪念品每件售价80元.
(1)如果购买甲、乙两种纪念品一共花费了9600元,求购买甲、乙两种纪念品各是多少件?
(2)设购买甲种纪念品件,如果购买乙种纪念品的件数不超过甲种纪念品的数量的2倍,并且总费用不超过9400元.问组委会购买甲、乙两种纪念品共有几种方案?哪一种方案所需总费用最少?最少总费用是多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在△ABC中,∠ACB=90°,D是AB边上一点,以BD为直径的⊙O与边AC有公共点E,连结DE并延长,与BC的延长线交于点F ,BD=BF.
(1)求证:AC是⊙O的切线;
(2)若∠F=60°,BF=8,求CF的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com