【题目】如图1,已知抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0),B两点,(点A在点B的左侧),与直线AC交于点C(2,3),直线AC与抛物线的对称轴l相交于点D,连接BD.
(1)求抛物线的函数表达式,并求出点D的坐标;
(2)如图2,若点M、N同时从点D出发,均以每秒1个单位长度的速度分别沿DA、DB运动,连接MN,将△DMN沿MN翻折,得到△D′MN,判断四边形DMD′N的形状,并说明理由,当运动时间t为何值时,点D′恰好落在x轴上?
(3)在平面内,是否存在点P(异于A点),使得以P、B、D为顶点的三角形与△ABD相似(全等除外)?若存在,请直接写出点P的坐标,若不存在,请说明理由.
【答案】
(1)
解:将点A(﹣1,0)、C(2,3)代入y=﹣x2+bx+c,得:
,
解得: ,
∴抛物线的解析式为y=﹣x2+2x+3,
∵y=﹣x2+2x+3=﹣(x﹣1)2+4,
∴抛物线的对称轴为直线x=1,
设直线AC的函数解析式为y=kx+b,
将A(﹣1,0)、C(2,3)代入y=kx+b,得:
,
解得: ,
∴直线AC的函数解析式为y=x+1,
又∵点D是直线AC与抛物线的对称轴的交点,
∴xD=1,yD=1+1=2,
∴点D的坐标为(1,2)
(2)
解:四边形DMD′N是正方形,理由如下:
∵抛物线y=﹣x2+2x+3与x轴交于A、B两点,
∴令y=0,得﹣x2+2x+3=0,
解得:x1=﹣1,x2=3,
∴A(﹣1,0)、B(3,0),
∴AD= =2 ,BD= =2 ,AB=1+3=4,
而AD2+BD2=AB2,
∴△ABD是等腰直角三角形,
∴∠DAB=∠DBA=45°,∠ADB=90°,
由翻折可知:D′M=DM、DN=ND′,
又∵DM=DN,
∴四边形MDND′为菱形,
∵∠MDN=90°,
∴四边形MDND′是正方形;
设DM=DN=t,当点D落在x轴上的点D′处时,
∵四边形MDND′为正方形,
∴∠D′NB=90°,
在Rt△D′NB中,D′N=t,BN=2 ﹣t,BD′=2,
∴t2+(2 ﹣t)2=22,
∴t1=t2= ,
即:经过 s时,点D恰好落在x轴上的D′处
(3)
解:存在,
如图,
由(2)知△ABD为等腰直角三角形,
∵△PBD与△ABD相似,且不全等,
∴△PBD是以BD为斜边的等腰直角三角形,
∴点P的坐标为(1,0)或(2,3)
【解析】(1)先利用待定系数法求得抛物线和直线的解析式,从而得出对称轴与直线的交点;(2)由抛物线解析式求得点A、B坐标,结合点D坐标可知△ABD为等腰直角三角形,即∠DAB=∠DBA=45°、∠ADB=90°,由翻折性质得D′M=DM、DN=ND′,从而得出四边形MDND′为菱形,根据∠MDN=90°即可得四边形MDND′为正方形;设DM=DN=t,在Rt△D′NB中D′N=t、BN=2 ﹣t、BD′=2,根据勾股定理即可得出t的值;(3)由△ABD为等腰直角三角形及△PBD与△ABD相似且不全等,知△PBD是以BD为斜边的等腰直角三角形,结合图形即可得答案.
科目:初中数学 来源: 题型:
【题目】如图,已知等边△ABC,请用直尺(不带刻度)和圆规,按下列要求作图(不要求写作法,但要保留作图痕迹):
(1)作△ABC的外心O;
(2)设D是AB边上一点,在图中作出一个正六边形DEFGHI,使点F,点H分别在边BC和AC上.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读与思考 婆罗摩笈多(Brahmagupta),是一位印度数学家和天文学家,书写了两部关于数学和天文学的书籍,他的一些数学成就在世界数学史上有较高的地位,他的负数概念及加减法运算仅晚于中国《九章算术》,而他的负数乘除法法则在全世界都是领先的,他还提出了著名的婆罗摩笈多定理,该定理的内容及部分证明过程如下:
已知:如图1,四边形ABCD内接于⊙O,对角线AC⊥BD于点P,PM⊥AB于点M,延长MP交CD于点N,求证:CN=DN.
证明:在△ABP和△BMP中,∵AC⊥BD,PM⊥AB,
∴∠BAP+∠ABP=90°,∠BPM+∠MBP=90°.
∴∠BAP=∠BPM.
∵∠DPN=∠BPM,∠BAP=∠BDC.
∴…
(1)请你阅读婆罗摩笈多定理的证明过程,完成剩余的证明部分.
(2)已知:如图2,△ABC内接于⊙O,∠B=30°,∠ACB=45°,AB=2,点D在⊙O上,∠BCD=60°,连接AD,与BC交于点P,作PM⊥AB于点M,延长MP交CD于点N,则PN的长为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,A是抛物线y= x2上的一个动点,且点A在第一象限内.AE⊥y轴于点E,点B坐标为(0,2),直线AB交x轴于点C,点D与点C关于y轴对称,直线DE与AB相交于点F,连结BD.设线段AE的长为m,△BED的面积为S.
(1)当m= 时,求S的值.
(2)求S关于m(m≠2)的函数解析式.
(3)①若S= 时,求 的值;
②当m>2时,设 =k,猜想k与m的数量关系并证明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知当x1=a,x2=b,x3=c时,二次函数y= x2+mx对应的函数值分别为y1 , y2 , y3 , 若正整数a,b,c恰好是一个三角形的三边长,且当a<b<c时,都有y1<y2<y3 , 则实数m的取值范围是 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知在平面直角坐标系xOy中,O是坐标原点,抛物线y=﹣x2+bx+c(c>0)的顶点为D,与y轴的交点为C,过点C作CA∥x轴交抛物线于点A,在AC延长线上取点B,使BC= AC,连接OA,OB,BD和AD.
(1)若点A的坐标是(﹣4,4).
①求b,c的值;
②试判断四边形AOBD的形状,并说明理由;
(2)是否存在这样的点A,使得四边形AOBD是矩形?若存在,请直接写出一个符合条件的点A的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,矩形OABC的顶点A、C分别在x、y轴的正半轴上,点D为BC边上的点,反比例函数y= (k≠0)在第一象限内的图象经过点D(m,2)和AB边上的点E(3, ).
(1)求反比例函数的表达式和m的值;
(2)将矩形OABC的进行折叠,使点O于点D重合,折痕分别与x轴、y轴正半轴交于点F,G,求折痕FG所在直线的函数关系式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一块矩形木板,它的右上角有一个圆洞,现设想将它改造成火锅餐桌桌面,要求木板大小不变,且使圆洞的圆心在矩形桌面的对角线的交点上.木工师傅想了一个巧妙的办法,他测量了PQ与圆洞的切点K到点B的距离及相关数据(单位:cm),从点N沿折线NF﹣FM(NF∥BC,FM∥AB)切割,如图1所示.图2中的矩形EFGH是切割后的两块木板拼接成符合要求的矩形桌面示意图(不重叠,无缝隙,不记损耗),则CN,AM的长分别是 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com